An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients

异柠檬酸脱氢酶 胶质瘤 一致性 IDH1 肿瘤科 突变 内科学 接收机工作特性 医学 基因 生物 癌症研究 遗传学 生物化学
作者
Jian Chen,Xiaojun Qian,Yifu He,Xinghua Han,Yueyin Pan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab190
摘要

Although the prognosis of lower-grade glioma (LGG) patients is better than others, outcomes are highly heterogeneous. Isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status can identify patient subsets with different prognosis. However, in the era of precision medicine, there is still a lack of biomarkers that can accurately predict the individual prognosis of each patient. In this study, we found that most DNA damage response (DDR) genes were aberrantly expressed in LGG patients and were associated with their prognosis. Consequently, we developed an artificial neural network (ANN) model based on DDR genes to predict outcomes of LGG glioma patients. Then, we validated the predictive ability in an independent external dataset and found that the concordance indexes and area under time-dependent receiver operating characteristic curves of the predict index (PI) calculated based on the model were superior to those of the mutation markers. Subgroup analyses demonstrated that the model could accurately identify patients with the same mutation status but different prognosis. Moreover, the model can also identify patients with favorable prognostic mutation status but poor prognosis or vice versa. Finally, we also found that the PI was associated with the mutation status and with the altered immune microenvironment. These results demonstrated that the ANN model can accurately predict outcomes of LGG patients and will contribute to individualized therapies. In addition, a web-based application program for the model was developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11关注了科研通微信公众号
2秒前
韩涵发布了新的文献求助10
2秒前
wqq发布了新的文献求助10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
李健应助随机游走采纳,获得10
5秒前
bound完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
王乾龙发布了新的文献求助10
9秒前
win发布了新的文献求助10
10秒前
耕牛热完成签到,获得积分10
10秒前
小李新人完成签到 ,获得积分10
11秒前
自然秋柳发布了新的文献求助10
11秒前
jyyg发布了新的文献求助10
12秒前
13秒前
13秒前
He发布了新的文献求助10
14秒前
机灵的大地完成签到,获得积分10
14秒前
14秒前
活泼万言完成签到,获得积分10
16秒前
Lucas应助WD采纳,获得10
18秒前
搜集达人应助王乾龙采纳,获得10
20秒前
Osshun完成签到 ,获得积分10
22秒前
在水一方应助111采纳,获得10
23秒前
He完成签到,获得积分10
23秒前
慕青应助典雅的俊驰采纳,获得10
25秒前
27秒前
28秒前
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182