An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients

异柠檬酸脱氢酶 胶质瘤 一致性 IDH1 肿瘤科 突变 内科学 接收机工作特性 医学 基因 生物 癌症研究 遗传学 生物化学
作者
Jian Chen,Xiaojun Qian,Yifu He,Xinghua Han,Yueyin Pan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab190
摘要

Although the prognosis of lower-grade glioma (LGG) patients is better than others, outcomes are highly heterogeneous. Isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status can identify patient subsets with different prognosis. However, in the era of precision medicine, there is still a lack of biomarkers that can accurately predict the individual prognosis of each patient. In this study, we found that most DNA damage response (DDR) genes were aberrantly expressed in LGG patients and were associated with their prognosis. Consequently, we developed an artificial neural network (ANN) model based on DDR genes to predict outcomes of LGG glioma patients. Then, we validated the predictive ability in an independent external dataset and found that the concordance indexes and area under time-dependent receiver operating characteristic curves of the predict index (PI) calculated based on the model were superior to those of the mutation markers. Subgroup analyses demonstrated that the model could accurately identify patients with the same mutation status but different prognosis. Moreover, the model can also identify patients with favorable prognostic mutation status but poor prognosis or vice versa. Finally, we also found that the PI was associated with the mutation status and with the altered immune microenvironment. These results demonstrated that the ANN model can accurately predict outcomes of LGG patients and will contribute to individualized therapies. In addition, a web-based application program for the model was developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助lalala采纳,获得10
1秒前
1秒前
百邪灵完成签到,获得积分10
1秒前
Seven37发布了新的文献求助10
1秒前
科研通AI2S应助小鱼采纳,获得10
2秒前
2秒前
不可说完成签到,获得积分10
3秒前
jiujiu完成签到,获得积分20
4秒前
FashionBoy应助Zhang采纳,获得10
4秒前
8秒前
Seven37完成签到,获得积分10
8秒前
欢喜的晓霜完成签到 ,获得积分10
10秒前
采薇发布了新的文献求助10
11秒前
敬敬完成签到,获得积分10
11秒前
13秒前
英姑应助感动迎蕾采纳,获得10
14秒前
无花果应助illion1采纳,获得10
14秒前
14秒前
花菜炒肉发布了新的文献求助30
14秒前
小鱼儿发布了新的文献求助10
16秒前
17秒前
123应助小九采纳,获得10
17秒前
小安发布了新的文献求助10
19秒前
伶俐靳完成签到,获得积分10
23秒前
25秒前
simulium完成签到 ,获得积分10
28秒前
29秒前
29秒前
Billy应助认真梦柏采纳,获得30
29秒前
30秒前
wyj完成签到,获得积分10
30秒前
小鱼儿完成签到,获得积分10
30秒前
31秒前
31秒前
WUWUWU应助魔幻的马里奥采纳,获得10
31秒前
32秒前
Star1983完成签到,获得积分10
32秒前
33秒前
33秒前
杨鑫6219完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318