Advances in Neural Rendering

渲染(计算机图形) 计算机科学 人工智能 计算机图形学(图像) 图形管道 平铺渲染 基于图像的建模与绘制 计算机视觉 三维渲染 光线追踪(物理) 计算机图形学 实时渲染 交替帧渲染 软件渲染 多边形网格 三维计算机图形学 物理 量子力学
作者
Ayush Tewari,Justus Thies,Ben Mildenhall,Pratul P. Srinivasan,Edgar Tretschk,Yifan Wang,Christoph Lassner,Vincent Sitzmann,Ricardo Martin-Brualla,Stephen Lombardi,Tomas Simon,Christian Theobalt,Matthias Nießner,Jonathan T. Barron,Gordon Wetzstein,Michael Zollhöfer,Vladislav Golyanik
出处
期刊:Computer Graphics Forum [Wiley]
卷期号:41 (2): 703-735 被引量:171
标识
DOI:10.1111/cgf.14507
摘要

Abstract Synthesizing photo‐realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist), point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical computer graphics and machine learning to create algorithms for synthesizing images from real‐world observations. Neural rendering is a leap forward towards the goal of synthesizing photo‐realistic image and video content. In recent years, we have seen immense progress in this field through hundreds of publications that show different ways to inject learnable components into the rendering pipeline. This state‐of‐the‐art report on advances in neural rendering focuses on methods that combine classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A key advantage of these methods is that they are 3D‐consistent by design, enabling applications such as novel viewpoint synthesis of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling non‐rigidly deforming objects and scene editing and composition. While most of these approaches are scene‐specific, we also discuss techniques that generalize across object classes and can be used for generative tasks. In addition to reviewing these state‐of‐the‐art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude with a discussion on open challenges and social implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liang完成签到,获得积分10
1秒前
北星完成签到,获得积分10
1秒前
jingzhe发布了新的文献求助10
1秒前
1秒前
狸小狐完成签到,获得积分10
1秒前
shunxinruyi发布了新的文献求助20
3秒前
6秒前
8秒前
丹妮发布了新的文献求助10
8秒前
Vivid完成签到,获得积分10
9秒前
10秒前
天涯赤子发布了新的文献求助10
11秒前
12秒前
wzy完成签到 ,获得积分10
12秒前
科研通AI2S应助jingzhe采纳,获得10
12秒前
文人青完成签到,获得积分10
12秒前
情怀应助苇一采纳,获得10
12秒前
坚强母鸡完成签到,获得积分10
13秒前
Vivid发布了新的文献求助10
15秒前
15秒前
zzzzzz发布了新的文献求助30
16秒前
shunxinruyi完成签到,获得积分10
18秒前
18秒前
翾喾鷇发布了新的文献求助10
18秒前
科研通AI2S应助背后的小之采纳,获得10
20秒前
大模型应助salapao采纳,获得10
20秒前
llling完成签到,获得积分10
20秒前
21秒前
大模型应助trista采纳,获得10
21秒前
22秒前
23秒前
RoyChen发布了新的文献求助10
23秒前
Bai发布了新的文献求助10
25秒前
一念往生完成签到,获得积分10
26秒前
科研通AI2S应助llling采纳,获得10
27秒前
30秒前
31秒前
程翠丝完成签到,获得积分10
32秒前
十米完成签到 ,获得积分10
34秒前
星辰大海应助阿智采纳,获得10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236135
求助须知:如何正确求助?哪些是违规求助? 2881861
关于积分的说明 8224025
捐赠科研通 2549869
什么是DOI,文献DOI怎么找? 1378680
科研通“疑难数据库(出版商)”最低求助积分说明 648430
邀请新用户注册赠送积分活动 623871