A CT-based deep learning model for subsolid pulmonary nodules to distinguish minimally invasive adenocarcinoma and invasive adenocarcinoma

医学 列线图 接收机工作特性 卷积神经网络 腺癌 深度学习 判别式 置信区间 人工智能 放射科 Lasso(编程语言) 核医学 内科学 癌症 计算机科学 万维网
作者
Xiangmeng Chen,Bao Feng,Yehang Chen,Xiaobei Duan,Kunfeng Liu,Kunwei Li,Chaotong Zhang,Xueguo Liu,Wansheng Long
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:145: 110041-110041 被引量:4
标识
DOI:10.1016/j.ejrad.2021.110041
摘要

To develop and validate a deep learning nomogram (DLN) model constructed from non-contrast computed tomography (CT) images for discriminating minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC) in patients with subsolid pulmonary nodules (SSPNs).In total, 365 consecutive patients who presented with SSPNs and were pathologically diagnosed with MIA or IAC after surgery, were recruited from two medical institutions from 2016 to 2019. Deep learning features were selected from preoperative CT images using convolutional neural network. Deep learning signature (DLS) was developed via the least absolute shrinkage and selection operator (LASSO). New DLN integrating clinical variables, subjective CT findings, and DLS was constructed. The diagnostic efficiency and discriminative capability were analyzed using the receiver operating characteristic method and decision curve analysis (DCA).In total, 18 deep learning features with non-zero coefficients were enrolled to develop the DLS, which was statistically different between the MIA and IAC groups. Independent predictors of DLS and lobulated sharp were used to build the DLN. The areas under the curves of the DLN were 0.889 (95% confidence interval (CI): 0.824-0.936), 0.915 (95% CI: 0.846-0.959), and 0.914 (95% CI: 0.848-0.958) in the training, internal validation, and external validation cohorts, respectively. After stratification analysis and DCA, the DLN showed potential generalization ability.The DLN incorporating the DLS and subjective CT findings have strong potential to distinguish MIA from IAC in patients with SSPNs, and will facilitate the suitable treatment method selection for the management of SSPNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧问柳完成签到 ,获得积分10
刚刚
1秒前
mianmian0118发布了新的文献求助10
1秒前
勤奋的日记本完成签到,获得积分10
2秒前
3秒前
123完成签到,获得积分10
3秒前
兰月满楼发布了新的文献求助10
3秒前
Song完成签到,获得积分20
3秒前
4秒前
赘婿应助小王同学采纳,获得10
4秒前
5秒前
zhaolei完成签到 ,获得积分10
5秒前
wxzk发布了新的文献求助10
5秒前
热忱未减应助云上人采纳,获得20
6秒前
田様应助隐形白亦采纳,获得10
6秒前
7秒前
科研通AI5应助WeiPaiHWuFXZ采纳,获得10
7秒前
星辰大海应助Desserts采纳,获得10
7秒前
达达利亚发布了新的文献求助10
7秒前
何笑晴完成签到,获得积分10
8秒前
zze发布了新的文献求助10
9秒前
槻木汐完成签到,获得积分10
10秒前
10秒前
负责的紫安完成签到 ,获得积分10
10秒前
传奇3应助wxzk采纳,获得10
10秒前
10秒前
酷酷菲音发布了新的文献求助10
12秒前
平淡荟完成签到,获得积分20
13秒前
13秒前
缥缈母鸡完成签到,获得积分10
13秒前
14秒前
Frisk12sfs发布了新的文献求助10
15秒前
15秒前
hotzera完成签到,获得积分10
16秒前
albertxin完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA handbook of personality and social psychology, Volume 2: Group processes 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3654822
求助须知:如何正确求助?哪些是违规求助? 3218154
关于积分的说明 9721674
捐赠科研通 2926233
什么是DOI,文献DOI怎么找? 1602567
邀请新用户注册赠送积分活动 755566
科研通“疑难数据库(出版商)”最低求助积分说明 733417