Research on Rehabilitation Effect Prediction for Patients with SCI Based on Machine Learning

医学 康复 均方误差 日常生活活动 皮尔逊积矩相关系数 随机森林 物理疗法 标准误差 平均绝对误差 人工智能 机器学习 物理医学与康复 统计 数学 计算机科学
作者
Fei Yang,Xin Guo
出处
期刊:World Neurosurgery [Elsevier]
卷期号:158: e662-e674 被引量:2
标识
DOI:10.1016/j.wneu.2021.11.040
摘要

Because of the complex condition of patients with spinal cord injury (SCI), it is difficult to accurately calculate the activity of daily living (ADL) score of discharged patients. In view of the above problem, this research proposes a prediction model of discharged ADL score based on machine learning, in order to get the rehabilitation effect of patients after rehabilitation training. First, the medical records of 1231 patients with SCI were collected, and the corresponding data preprocessing was carried out. Secondly, the Pearson correlation coefficient method was combined with the feature selection method based on random forest (RF) to screen out 6 features closely related to the discharged ADL score. Then RF and RF optimized by Harris hawks optimizer (HHO-RF) were used to predict the discharged ADL score of patients with SCI. The mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination ( R 2 ) were used as evaluation indicators of the model. The prediction features selected by feature extraction were ADL score on admission, age, injury segment, injury reason, injury position, and injury degree. After 10-fold cross-validation, MAE, RMSE, and R 2 of RF were 0.0875, 0.1346, and 0.7662, respectively. MAE, RMSE, and R 2 of HHO-RF were 0.0821, 0.1089, and 0.8537, respectively. The prediction effect of HHO-RF has been greatly improved. In clinical treatment, HHO-RF can accurately predict the discharged ADL score and provide a reasonable direction for patients to choose rehabilitation programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高一一完成签到,获得积分20
1秒前
1秒前
善学以致用应助ff采纳,获得30
1秒前
加油女王发布了新的文献求助10
1秒前
errui发布了新的文献求助10
3秒前
深情安青应助LLLL采纳,获得10
3秒前
3秒前
zik发布了新的文献求助10
4秒前
5秒前
Lucas应助荔枝面采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
善学以致用应助misong采纳,获得10
6秒前
科研通AI6应助mayyyyyy采纳,获得10
6秒前
果子发布了新的文献求助10
6秒前
8秒前
星辰大海应助唐代斯采纳,获得10
8秒前
9秒前
查查发布了新的文献求助10
9秒前
余呀余完成签到 ,获得积分10
9秒前
9秒前
无花果应助zhangzf采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
1215108882发布了新的文献求助10
13秒前
13秒前
mayyyyyy完成签到,获得积分20
13秒前
陈志亨发布了新的文献求助10
14秒前
14秒前
15秒前
蓝天应助nc采纳,获得10
15秒前
15秒前
自觉逊发布了新的文献求助10
16秒前
孙明振发布了新的文献求助10
16秒前
17秒前
大模型应助热心傲珊采纳,获得10
17秒前
逆流沙完成签到,获得积分10
17秒前
Jasper应助errui采纳,获得10
17秒前
YY发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589645
求助须知:如何正确求助?哪些是违规求助? 4674252
关于积分的说明 14792825
捐赠科研通 4628743
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501019
关于科研通互助平台的介绍 1468472