Topic Modeling Enhancement using Word Embeddings

潜在Dirichlet分配 计算机科学 词(群论) 文字嵌入 人工智能 自然语言处理 主题模型 代表(政治) 吉布斯抽样 嵌入 语言学 贝叶斯概率 哲学 政治 政治学 法学
作者
Sorawan Limwattana,Santitham Prom-on
出处
期刊:International Joint Conference on Computer Science and Software Engineering 被引量:2
标识
DOI:10.1109/jcsse53117.2021.9493816
摘要

Latent Dirichlet Allocation(LDA) is one of the powerful techniques in extracting topics from a document. The original LDA takes the Bag-of-Word representation as the input and produces topic distributions in documents as output. The drawback of Bag-of-Word is that it represents each word with a plain one-hot encoding which does not encode the word level information. Later research in Natural Language Processing(NLP) demonstrate that word embeddings technique such as Skipgram model can provide a good representation in capturing the relationship and semantic information between words. In recent studies, many NLP tasks could gain better performance by applying the word embedding as the representation of words. In this paper, we propose Deep Word-Topic Latent Dirichlet Allocation(DWT-LDA), a new process for training LDA with word embedding. A neural network with word embedding is applied to the Collapsed Gibbs Sampling process as another choice for word topic assignment. To quantitatively evaluate our model, the topic coherence framework and topic diversity are the metrics used to compare between our approach and the original LDA. The experimental result shows that our method generates more coherent and diverse topics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助xiaozy采纳,获得10
刚刚
wu完成签到,获得积分10
刚刚
1秒前
1秒前
从前慢完成签到,获得积分10
1秒前
1秒前
秦QQ完成签到 ,获得积分20
1秒前
xyh发布了新的文献求助30
1秒前
ybigwhite发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
王迪迪完成签到,获得积分10
2秒前
3秒前
勤劳沛柔发布了新的文献求助10
3秒前
zz完成签到,获得积分10
3秒前
那咋了发布了新的文献求助10
3秒前
3秒前
3秒前
bkagyin应助phil采纳,获得10
4秒前
乐乐应助大帅采纳,获得50
4秒前
Manuscript发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
王迪迪发布了新的文献求助10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
充电宝应助洪星采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得30
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
slim完成签到 ,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848