Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4

材料科学 带隙 尖晶石 光电子学 兴奋剂 接受者 半导体 凝聚态物理 冶金 物理
作者
Zeyu Chi,Fu‐Gow Tarntair,Mathieu Frégnaux,Wan-Yu Wu,Corinne Sartel,Ismail Madaci,P. Chapon,Vincent Sallet,Yves Dumont,Amador Pérez‐Tomás,Ray‐Hua Horng,E. Chikoidze
出处
期刊:Materials Today Physics [Elsevier BV]
卷期号:20: 100466-100466 被引量:49
标识
DOI:10.1016/j.mtphys.2021.100466
摘要

The spinel group is a growing family of materials with general formulation AB2X4 (the X anion typically being a chalcogen like O and S) with many advanced applications for energy. At the time being, the spinel zinc gallate (ZnGa2O4) arguably is the ternary ultra-wide bandgap bipolar oxide semiconductor with the largest bandgap (∼5eV), making this material very promising for implementations in deep UV optoelectronics and ultra-high power electronics. In this work, we further demonstrate that, exploiting the rich cation coordination possibilities of the spinel chemistry, the ZnGa2O4 intrinsic conductivity (and its polarity) can be controlled well over 10 orders of magnitude. p-type and n-type ZnGa2O4 epilayers can be grown by tuning the pressure, oxygen flow and cation precursors ratio during metal-organic chemical vapor deposition. A relatively deep acceptor level can be achieved by promoting antisites (ZnGa) defects, while up to a (n > 1019 cm−3) donor concentration is obtained due to the hybridization of the Zn–O orbitals in the samples grown in Zn-rich conditions. Electrical transport, atomic and optical spectroscopy reveal a free hole conduction (at high temperature) for p-ZnGa2O4 while for n-ZnGa2O4 a (Mott) variable range hopping (VRH) and negative magnetoresistance phenomena take place, originated from “self-impurity” band located at Ev+ ∼3.4 eV. Among arising ultra-wide bandgap semiconductors, spinel ZnGa2O4 exhibit unique self-doping capability thus extending its application at the very frontier of current energy optoelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助flynn3735采纳,获得10
1秒前
1秒前
2秒前
TIAN关注了科研通微信公众号
2秒前
111完成签到,获得积分10
2秒前
opp发布了新的文献求助10
4秒前
菠萝完成签到,获得积分10
5秒前
Sakura完成签到,获得积分10
5秒前
帅气绝施发布了新的文献求助10
6秒前
7秒前
yuzhongLuo发布了新的文献求助10
7秒前
我就叫渣渣辉吧完成签到,获得积分10
8秒前
8秒前
修仙中应助优秀的方盒采纳,获得10
8秒前
9秒前
直率如凡完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
hitzwd完成签到,获得积分10
11秒前
11秒前
优雅草丛应助科研通管家采纳,获得40
12秒前
星辰大海应助qq大魔王采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
xrrrr应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
任性雨安发布了新的文献求助10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708