纳米团簇
催化作用
金属
材料科学
烧结
氧化物
Atom(片上系统)
钝化
化学工程
纳米技术
化学物理
化学
冶金
有机化学
嵌入式系统
工程类
图层(电子)
计算机科学
作者
Jingyue Liu,Xu Li,Xavier Isidro Pereira Hernández,Chia‐Yu Fang,Yizhen Chen,Jie Zeng,Yong Wang,Bruce C. Gates
出处
期刊:Research Square - Research Square
日期:2021-06-24
标识
DOI:10.21203/rs.3.rs-604924/v1
摘要
Abstract Single-atom catalysts (SACs) exhibit unique catalytic property and maximum atom efficiency of rare, expensive metals. A critical barrier to applications of SACs is sintering of active metal atoms under operating conditions. Anchoring metal atoms onto oxide supports via strong metal-support bonds may alleviate sintering. Such an approach, however, usually comes at a cost: stabilization results from passivation of metal sites by excessive oxygen ligation—too many open coordination sites taken up by the support, too few left for catalytic action. Furthermore, when such stabilized metal atoms are activated by reduction at elevated temperatures they become unlinked and so move and sinter, leading to loss of catalytic function. We report a new strategy, confining atomically dispersed metal atoms onto functional oxide nanoclusters (denoted as nanoglues) that are isolated and immobilized on a robust, high-surface-area support—so that metal atoms do not sinter under conditions of catalyst activation and/or operation. High-number-density, ultra-small and defective CeOx nanoclusters were grafted onto high-surface-area SiO2 as nanoglues to host atomically dispersed Pt. The Pt atoms remained on the CeOx nanoglue islands under both O2 and H2 environment at high temperatures. Activation of CeOx supported Pt atoms increased the turnover frequency for CO oxidation by 150 times. The exceptional stability under reductive conditions is attributed to the much stronger affinity of Pt atoms for CeOx than for SiO2—the Pt atoms can move but they are confined to their respective nanoglue islands, preventing formation of larger Pt particles. The strategy of using functional nanoglues to confine atomically dispersed metal atoms and simultaneously enhance catalytic performance of localized metal atoms is general and takes SACs one major step closer to practical applications as robust catalysts for a wide range of catalytic transformations
科研通智能强力驱动
Strongly Powered by AbleSci AI