Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 数学分析 哲学 物理 认识论 纯数学 热力学
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Nature Portfolio]
卷期号:3 (6): 422-440 被引量:3600
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
聪慧的怀绿完成签到,获得积分10
4秒前
4秒前
英姑应助逢流采纳,获得10
5秒前
活力思枫完成签到,获得积分10
5秒前
张甜完成签到,获得积分10
6秒前
towanda发布了新的文献求助10
6秒前
7秒前
CAOHOU应助Cici采纳,获得10
7秒前
Rondab应助Cici采纳,获得10
7秒前
大个应助Cici采纳,获得10
7秒前
谦让傲菡完成签到,获得积分10
8秒前
Leoling发布了新的文献求助10
9秒前
陈陈发布了新的文献求助10
11秒前
anyelengxin完成签到,获得积分20
11秒前
11秒前
天天快乐应助cijing采纳,获得10
12秒前
黎小静发布了新的文献求助10
12秒前
天天快乐应助猪猪hero采纳,获得10
12秒前
可飞完成签到,获得积分10
12秒前
徐逊发布了新的文献求助10
14秒前
17818521677完成签到,获得积分10
15秒前
16秒前
乐乐应助ssx采纳,获得20
16秒前
16秒前
量子星尘发布了新的文献求助150
17秒前
UNICORN完成签到,获得积分10
17秒前
zy完成签到,获得积分10
19秒前
菠萝蜜发布了新的文献求助10
21秒前
orixero应助UNICORN采纳,获得10
21秒前
坦率的匪应助冷静的斑马采纳,获得10
22秒前
黎小静完成签到,获得积分10
22秒前
Lucas应助lily采纳,获得10
23秒前
不秃头完成签到,获得积分10
23秒前
orixero应助lily采纳,获得10
23秒前
123关闭了123文献求助
23秒前
HH完成签到,获得积分10
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126