Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 纯数学 热力学 数学分析 哲学 物理 认识论
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:3 (6): 422-440 被引量:4889
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TRY发布了新的文献求助10
刚刚
思源应助仲谋采纳,获得10
1秒前
1秒前
Masamune发布了新的文献求助30
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
上官若男应助lois采纳,获得10
3秒前
zd200572完成签到,获得积分10
3秒前
3秒前
6秒前
6秒前
chen完成签到 ,获得积分10
7秒前
所所应助杜色建风采纳,获得10
8秒前
十三应助loo采纳,获得10
8秒前
9秒前
10秒前
10秒前
青年才俊完成签到,获得积分10
10秒前
chen应助shiqi采纳,获得10
11秒前
MIRROR发布了新的文献求助10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
JayceHe应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
rain应助科研通管家采纳,获得10
12秒前
yyzhou应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
yyzhou应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
清飏应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642783
求助须知:如何正确求助?哪些是违规求助? 4759870
关于积分的说明 15018994
捐赠科研通 4801298
什么是DOI,文献DOI怎么找? 2566633
邀请新用户注册赠送积分活动 1524577
关于科研通互助平台的介绍 1484152