Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 纯数学 热力学 数学分析 哲学 物理 认识论
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:3 (6): 422-440 被引量:4755
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goldkoi发布了新的文献求助10
2秒前
大模型应助苟文锋采纳,获得10
3秒前
3秒前
GG发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
机灵班应助舒服的飞丹采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
cc发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得20
6秒前
Hello应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297710
求助须知:如何正确求助?哪些是违规求助? 4446487
关于积分的说明 13839691
捐赠科研通 4331653
什么是DOI,文献DOI怎么找? 2377824
邀请新用户注册赠送积分活动 1373105
关于科研通互助平台的介绍 1338650