Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 纯数学 热力学 数学分析 哲学 物理 认识论
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:3 (6): 422-440 被引量:4755
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BioRick发布了新的文献求助10
刚刚
holy发布了新的文献求助10
刚刚
pjwl完成签到 ,获得积分10
1秒前
wyw发布了新的文献求助10
3秒前
4秒前
Aza发布了新的文献求助10
4秒前
4秒前
上官若男应助张之晟采纳,获得10
5秒前
5秒前
5秒前
明理友琴发布了新的文献求助10
6秒前
7秒前
温柔安筠关注了科研通微信公众号
7秒前
8秒前
LTB发布了新的文献求助10
9秒前
烟花应助wyw采纳,获得30
9秒前
暗生崎乐发布了新的文献求助10
9秒前
hms发布了新的文献求助10
10秒前
华仔应助龚书婷采纳,获得10
11秒前
张之晟完成签到,获得积分20
13秒前
Hgybdo完成签到,获得积分10
13秒前
kingwill发布了新的文献求助30
14秒前
ZJRerrr发布了新的文献求助10
15秒前
tree完成签到,获得积分10
19秒前
20秒前
FashionBoy应助tly采纳,获得10
20秒前
green完成签到,获得积分10
21秒前
星辰大海应助JIE采纳,获得10
22秒前
22秒前
幼安k完成签到,获得积分10
22秒前
evans完成签到,获得积分10
22秒前
烟花应助667788采纳,获得10
23秒前
23秒前
Owen应助ZHXX采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
bubu11关注了科研通微信公众号
24秒前
你好完成签到 ,获得积分10
24秒前
aikeyan发布了新的文献求助10
24秒前
peilinyu完成签到,获得积分10
25秒前
善学以致用应助ZJRerrr采纳,获得10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229