EHR-Oriented Knowledge Graph System: Toward Efficient Utilization of Non-Used Information Buried in Routine Clinical Practice

医学诊断 计算机科学 图形数据库 图形 医疗急救 临床决策支持系统 知识管理 医学 决策支持系统 人工智能 病理 理论计算机科学
作者
Yong Shang,Yu Tian,Min Zhou,Tianshu Zhou,Kewei Lyu,Zhixiao Wang,Ran Xin,Qi Zhang,Qi Zhang,Jingsong Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2463-2475 被引量:23
标识
DOI:10.1109/jbhi.2021.3085003
摘要

Non-used clinical information has negative implications on healthcare quality. Clinicians pay priority attention to clinical information relevant to their specialties during routine clinical practices but may be insensitive or less concerned about information showing disease risks beyond their specialties, resulting in delayed and missed diagnoses or improper management. In this study, we introduced an electronic health record (EHR)-oriented knowledge graph system to efficiently utilize non-used information buried in EHRs. EHR data were transformed into a semantic patient-centralized information model under the ontology structure of a knowledge graph. The knowledge graph then creates an EHR data trajectory and performs reasoning through semantic rules to identify important clinical findings within EHR data. A graphical reasoning pathway illustrates the reasoning footage and explains the clinical significance for clinicians to better understand the neglected information. An application study was performed to evaluate unconsidered chronic kidney disease (CKD) reminding for non-nephrology clinicians to identify important neglected information. The study covered 71,679 patients in non-nephrology departments. The system identified 2,774 patients meeting CKD diagnosis criteria and 10,377 patients requiring high attention. A follow-up study of 5,439 patients showed that 82.1% of patients who met the diagnosis criteria and 61.4% of patients requiring high attention were confirmed to be CKD positive during follow-up research. The application demonstrated that the proposed approach is feasible and effective in clinical information utilization. Additionally, it's valuable as an explainable artificial intelligence to provide interpretable recommendations for specialist physicians to understand the importance of non-used data and make comprehensive decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzn1123应助粗暴的冰菱采纳,获得10
刚刚
搁浅发布了新的文献求助10
刚刚
刚刚
烟花应助公孙朝雨采纳,获得10
刚刚
1秒前
1秒前
2秒前
2秒前
caohai完成签到,获得积分10
2秒前
我是老大应助lslfreedom采纳,获得10
2秒前
ycjin完成签到,获得积分20
2秒前
2秒前
Joyj99完成签到,获得积分10
3秒前
EvenCai应助忆枫采纳,获得10
4秒前
Hello应助jagger采纳,获得30
4秒前
NMR完成签到,获得积分10
4秒前
尹天奇完成签到,获得积分10
5秒前
5秒前
NoMigraine发布了新的文献求助10
5秒前
lutos发布了新的文献求助10
5秒前
6秒前
还单身的香菇完成签到,获得积分10
6秒前
小妤丸子发布了新的文献求助10
7秒前
血狼旭魔发布了新的文献求助10
7秒前
NexusExplorer应助ljx采纳,获得10
7秒前
7秒前
8秒前
8秒前
深情安青应助xio采纳,获得10
8秒前
善良的远锋完成签到,获得积分10
10秒前
二三发布了新的文献求助10
10秒前
10秒前
paperSCI发布了新的文献求助10
10秒前
10秒前
子寒发布了新的文献求助10
10秒前
鱼鱼关注了科研通微信公众号
11秒前
赵123发布了新的文献求助10
12秒前
12秒前
笑柳发布了新的文献求助10
12秒前
FashionBoy应助sunny采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074