Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence

腋窝淋巴结 超声波 医学 预测值 接收机工作特性 活检 淋巴 放射科 计算机科学 转移 癌症 人工智能 病理 内科学
作者
Aylin Tahmasebi,Enze Qu,Alexander Sevrukov,Ji‐Bin Liu,Shuo Wang,Andrej Lyshchik,Jialu Yu,John R. Eisenbrey
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:43 (6): 329-336 被引量:11
标识
DOI:10.1177/01617346211035315
摘要

The purpose of this study was to evaluate an artificial intelligence (AI) system for the classification of axillary lymph nodes on ultrasound compared to radiologists. Ultrasound images of 317 axillary lymph nodes from patients referred for ultrasound guided fine needle aspiration or core needle biopsy and corresponding pathology findings were collected. Lymph nodes were classified into benign and malignant groups with histopathological result serving as the reference. Google Cloud AutoML Vision (Mountain View, CA) was used for AI image classification. Three experienced radiologists also classified the images and gave a level of suspicion score (1–5). To test the accuracy of AI, an external testing dataset of 64 images from 64 independent patients was evaluated by three AI models and the three readers. The diagnostic performance of AI and the humans were then quantified using receiver operating characteristics curves. In the complete set of 317 images, AutoML achieved a sensitivity of 77.1%, positive predictive value (PPV) of 77.1%, and an area under the precision recall curve of 0.78, while the three radiologists showed a sensitivity of 87.8% ± 8.5%, specificity of 50.3% ± 16.4%, PPV of 61.1% ± 5.4%, negative predictive value (NPV) of 84.1% ± 6.6%, and accuracy of 67.7% ± 5.7%. In the three external independent test sets, AI and human readers achieved sensitivity of 74.0% ± 0.14% versus 89.9% ± 0.06% ( p = .25), specificity of 64.4% ± 0.11% versus 50.1 ± 0.20% ( p = .22), PPV of 68.3% ± 0.04% versus 65.4 ± 0.07% ( p = .50), NPV of 72.6% ± 0.11% versus 82.1% ± 0.08% ( p = .33), and accuracy of 69.5% ± 0.06% versus 70.1% ± 0.07% ( p = .90), respectively. These preliminary results indicate AI has comparable performance to trained radiologists and could be used to predict the presence of metastasis in ultrasound images of axillary lymph nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柒完成签到,获得积分10
刚刚
xinghhhe完成签到,获得积分10
刚刚
若俗人完成签到,获得积分10
1秒前
wyn完成签到,获得积分10
1秒前
xs完成签到,获得积分10
2秒前
昭奚完成签到 ,获得积分10
3秒前
神圣先知完成签到,获得积分10
4秒前
Annie完成签到 ,获得积分10
4秒前
4秒前
mirrovo完成签到 ,获得积分10
5秒前
Y元Y完成签到,获得积分10
5秒前
现实的书芹完成签到,获得积分10
7秒前
卤蛋红完成签到,获得积分10
7秒前
Kay76完成签到,获得积分10
7秒前
8秒前
邬傥完成签到,获得积分10
8秒前
oaixlittle完成签到,获得积分10
8秒前
刻苦从阳发布了新的文献求助10
8秒前
平常冬天完成签到,获得积分10
9秒前
9秒前
我爱乒乓球完成签到,获得积分10
9秒前
Melon Mintea发布了新的文献求助10
9秒前
liu完成签到,获得积分10
10秒前
seattle完成签到,获得积分10
10秒前
Z1发布了新的文献求助10
11秒前
Kiss完成签到 ,获得积分10
11秒前
lily完成签到 ,获得积分10
12秒前
不安的朋友完成签到,获得积分10
12秒前
wqwq69完成签到,获得积分10
13秒前
柏忆南完成签到 ,获得积分10
13秒前
坦率的傲芙完成签到,获得积分10
14秒前
guoweisleep完成签到,获得积分10
14秒前
Albee0907完成签到,获得积分10
14秒前
Yz完成签到 ,获得积分10
14秒前
Anonymous完成签到,获得积分10
14秒前
啊七飞完成签到,获得积分10
15秒前
可乐全糖微冰完成签到,获得积分10
16秒前
16秒前
妙奇完成签到,获得积分10
18秒前
lixy完成签到,获得积分10
18秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219999
求助须知:如何正确求助?哪些是违规求助? 2868574
关于积分的说明 8161674
捐赠科研通 2535607
什么是DOI,文献DOI怎么找? 1368227
科研通“疑难数据库(出版商)”最低求助积分说明 645161
邀请新用户注册赠送积分活动 618494