Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence

腋窝淋巴结 超声波 医学 预测值 接收机工作特性 活检 淋巴 放射科 计算机科学 转移 癌症 人工智能 病理 内科学
作者
Aylin Tahmasebi,Enze Qu,Alexander Sevrukov,Ji‐Bin Liu,Shuo Wang,Andrej Lyshchik,Joshua Yu,John R. Eisenbrey
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:43 (6): 329-336 被引量:17
标识
DOI:10.1177/01617346211035315
摘要

The purpose of this study was to evaluate an artificial intelligence (AI) system for the classification of axillary lymph nodes on ultrasound compared to radiologists. Ultrasound images of 317 axillary lymph nodes from patients referred for ultrasound guided fine needle aspiration or core needle biopsy and corresponding pathology findings were collected. Lymph nodes were classified into benign and malignant groups with histopathological result serving as the reference. Google Cloud AutoML Vision (Mountain View, CA) was used for AI image classification. Three experienced radiologists also classified the images and gave a level of suspicion score (1–5). To test the accuracy of AI, an external testing dataset of 64 images from 64 independent patients was evaluated by three AI models and the three readers. The diagnostic performance of AI and the humans were then quantified using receiver operating characteristics curves. In the complete set of 317 images, AutoML achieved a sensitivity of 77.1%, positive predictive value (PPV) of 77.1%, and an area under the precision recall curve of 0.78, while the three radiologists showed a sensitivity of 87.8% ± 8.5%, specificity of 50.3% ± 16.4%, PPV of 61.1% ± 5.4%, negative predictive value (NPV) of 84.1% ± 6.6%, and accuracy of 67.7% ± 5.7%. In the three external independent test sets, AI and human readers achieved sensitivity of 74.0% ± 0.14% versus 89.9% ± 0.06% ( p = .25), specificity of 64.4% ± 0.11% versus 50.1 ± 0.20% ( p = .22), PPV of 68.3% ± 0.04% versus 65.4 ± 0.07% ( p = .50), NPV of 72.6% ± 0.11% versus 82.1% ± 0.08% ( p = .33), and accuracy of 69.5% ± 0.06% versus 70.1% ± 0.07% ( p = .90), respectively. These preliminary results indicate AI has comparable performance to trained radiologists and could be used to predict the presence of metastasis in ultrasound images of axillary lymph nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助灵魂采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
brwen发布了新的文献求助10
2秒前
南音完成签到 ,获得积分10
2秒前
3秒前
十月发布了新的文献求助10
3秒前
领导范儿应助韩hqf采纳,获得10
3秒前
4秒前
4秒前
迷路的蛋挞完成签到,获得积分20
4秒前
4秒前
鳗鱼飞松完成签到,获得积分20
5秒前
Owen应助Archer采纳,获得10
5秒前
无风海发布了新的文献求助10
5秒前
DajeVn完成签到,获得积分10
5秒前
赤丶赤发布了新的文献求助10
6秒前
6秒前
赘婿应助xly采纳,获得10
6秒前
可爱的函函应助刘龙强采纳,获得10
6秒前
Frost完成签到,获得积分10
7秒前
MTF完成签到,获得积分20
7秒前
www发布了新的文献求助10
8秒前
8秒前
桃子完成签到,获得积分10
9秒前
清河海风发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
贺呵呵完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
一念往生完成签到,获得积分10
11秒前
12秒前
Lucas应助zyqsn采纳,获得10
12秒前
打打应助无风海采纳,获得10
12秒前
万能图书馆应助zhang采纳,获得30
13秒前
打打应助小彬采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002