Towards Automatic and Agile AI/ML Accelerator Design with End-to-End Synthesis

计算机科学 敏捷软件开发 软件工程 软件 程序设计语言 模块化设计 过程(计算)
作者
Jeff Jun Zhang,Nicolas Bohm Agostini,Shihao Song,Cheng Tan,Ankur Limaye,Vinay Amatya,Joseph Manzano,Marco Minutoli,Vito Giovanni Castellana,Antonino Tumeo,Gu-Yeon Wei,David Brooks
出处
期刊:Application-Specific Systems, Architectures, and Processors 卷期号:: 218-225
标识
DOI:10.1109/asap52443.2021.00040
摘要

Domain-specific designs offer greater energy efficiency and performance gain than general-purpose processors. For this reason, modern system-on-chips have a significant portion of their silicon area with custom accelerators. However, designing hardware by hand is laborious and time-consuming, given the large design space and the performance, power, and area constraints that are not realized in the software. Moreover, domain-specific algorithms (e.g., machine learning models) are evolving quickly, challenging the accelerator design further. To address these issues, this paper presents SODA Synthesizer, an automated open-source high-level ML framework to Verilog modular compiler targeting AI/ML Application-Specific Integrated Circuits (ASICs) accelerators. SODA tightly couples the Multi-Level Intermediate Representation (MLIR) compiler infrastructure [24] and open-source HLS approaches. Thus, SODA can support various ML frameworks and algorithms and can perform optimizations that combine specialized architecture templates and conventional HLS to generate the hardware modules. In addition, SODA’s closed-loop design space exploration (DSE) engine allows developers to perform end-to-end design space explorations on different metrics and technology nodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助吃饱了撑的采纳,获得10
1秒前
2秒前
3秒前
吴迪发布了新的文献求助10
3秒前
3秒前
乐观的名完成签到,获得积分10
4秒前
安吉发布了新的文献求助10
5秒前
烟花应助白天采纳,获得10
5秒前
6秒前
7秒前
小石头发布了新的文献求助12
7秒前
Xuan发布了新的文献求助10
8秒前
wanci应助wabfye采纳,获得10
8秒前
科研通AI6应助WWJ采纳,获得10
9秒前
9秒前
酷波er应助GGbond采纳,获得10
9秒前
苏嘉完成签到,获得积分10
10秒前
10秒前
无名完成签到,获得积分10
10秒前
lxz发布了新的文献求助10
10秒前
11秒前
落后的彩虹完成签到,获得积分10
11秒前
11秒前
谛听不听完成签到 ,获得积分10
11秒前
脑洞疼应助Norajjj采纳,获得30
11秒前
大圣完成签到,获得积分10
13秒前
传奇3应助Ikaros采纳,获得10
13秒前
13秒前
领导范儿应助刘叶采纳,获得10
13秒前
LLL完成签到 ,获得积分10
14秒前
crf912完成签到,获得积分10
15秒前
15秒前
15秒前
卤笋发布了新的文献求助10
16秒前
16秒前
16秒前
犹豫三问发布了新的文献求助10
18秒前
nhsyb嘉完成签到,获得积分10
19秒前
陈陈陈完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641767
求助须知:如何正确求助?哪些是违规求助? 4757126
关于积分的说明 15014351
捐赠科研通 4800144
什么是DOI,文献DOI怎么找? 2565843
邀请新用户注册赠送积分活动 1524049
关于科研通互助平台的介绍 1483688