Dental Image Segmentation and Classification Using Inception Resnetv2

人工智能 分割 计算机科学 预处理器 模式识别(心理学) 卷积神经网络 图像分割 直方图均衡化 计算机视觉 直方图 图像(数学)
作者
M. V. Rajee,C. Mythili
出处
期刊:Iete Journal of Research [Informa]
卷期号:69 (8): 4972-4988 被引量:10
标识
DOI:10.1080/03772063.2021.1967793
摘要

The automated process for dental caries detection draws increasing attention with the technological innovation in machine learning methods. This is a core issue in dental diseases especially in the detection of caries as it leads to serious health ailments. This paper takes an effort to adequately segment and identify dental diseases. There are four main steps. The preprocessing technique uses binary histogram equalization which increases the texture region visibility for the caries detected on dental images. The novel technique of segmentation with Curvilinear Semantic Deep Convolutional Neural Network (CSDCNN) is proposed in this paper . The segmentation is followed by the proposed Inception resnetV2, which acts as the classification technique to determine the caries in dental images. The proposed segmentation algorithm is used to determine a dental degree of membership. The inception is brought out with different scales of information, which relates to various input images as data. An examination of the x-ray images will detect the impact of illness on a tooth. Particularly for the segmentation and classification mission, we deemed four diseases: dental caries, periapical infection, periodontal, and pericoronal diseases. Based on the number of input functional parameters, the Inception resnetV2 classifies different image categories effectively. The proposed Inception resnetV2 has become the most effective tool in machine learning to solve problems like image classification with a high order of accuracy. The average accuracy of the device proposed is 94.51%. This provides higher classification accuracy when compared to other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦成威完成签到,获得积分10
刚刚
酷波er应助南佳采纳,获得10
1秒前
1秒前
1秒前
Ava应助yan儿采纳,获得10
1秒前
丘比特应助纯真的莫茗采纳,获得10
1秒前
无花果应助勤恳的素阴采纳,获得10
1秒前
调皮的妙竹完成签到,获得积分10
2秒前
沫沫完成签到,获得积分10
2秒前
wzp发布了新的文献求助10
2秒前
2秒前
程程完成签到,获得积分20
2秒前
打打应助Ll采纳,获得10
2秒前
乐观发卡完成签到,获得积分20
3秒前
安详的帽子完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
vivi猫小咪发布了新的文献求助10
4秒前
Sue完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
Lucas应助南方姑娘采纳,获得10
5秒前
6秒前
zhing完成签到,获得积分10
6秒前
XHH完成签到 ,获得积分0
6秒前
小蘑菇应助sv采纳,获得10
7秒前
欢呼橘子完成签到 ,获得积分10
7秒前
季夏完成签到,获得积分10
7秒前
喜悦成威发布了新的文献求助20
7秒前
大菠萝发布了新的文献求助10
8秒前
8秒前
德德发布了新的文献求助10
8秒前
天天快乐应助Silence采纳,获得10
9秒前
深爱不疑发布了新的文献求助200
9秒前
可爱的函函应助九川采纳,获得10
9秒前
科研通AI5应助端庄的黑米采纳,获得30
10秒前
md03393完成签到,获得积分10
10秒前
苏照杭应助snowdrift采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762