Dental Image Segmentation and Classification Using Inception Resnetv2

人工智能 分割 计算机科学 预处理器 模式识别(心理学) 卷积神经网络 图像分割 直方图均衡化 计算机视觉 直方图 图像(数学)
作者
M. V. Rajee,C. Mythili
出处
期刊:Iete Journal of Research [Informa]
卷期号:69 (8): 4972-4988 被引量:10
标识
DOI:10.1080/03772063.2021.1967793
摘要

The automated process for dental caries detection draws increasing attention with the technological innovation in machine learning methods. This is a core issue in dental diseases especially in the detection of caries as it leads to serious health ailments. This paper takes an effort to adequately segment and identify dental diseases. There are four main steps. The preprocessing technique uses binary histogram equalization which increases the texture region visibility for the caries detected on dental images. The novel technique of segmentation with Curvilinear Semantic Deep Convolutional Neural Network (CSDCNN) is proposed in this paper . The segmentation is followed by the proposed Inception resnetV2, which acts as the classification technique to determine the caries in dental images. The proposed segmentation algorithm is used to determine a dental degree of membership. The inception is brought out with different scales of information, which relates to various input images as data. An examination of the x-ray images will detect the impact of illness on a tooth. Particularly for the segmentation and classification mission, we deemed four diseases: dental caries, periapical infection, periodontal, and pericoronal diseases. Based on the number of input functional parameters, the Inception resnetV2 classifies different image categories effectively. The proposed Inception resnetV2 has become the most effective tool in machine learning to solve problems like image classification with a high order of accuracy. The average accuracy of the device proposed is 94.51%. This provides higher classification accuracy when compared to other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
9577完成签到,获得积分10
1秒前
zhang发布了新的文献求助10
1秒前
Christine发布了新的文献求助30
2秒前
2秒前
北极光完成签到,获得积分10
2秒前
小二郎应助月影采纳,获得10
2秒前
苗条梦玉发布了新的文献求助30
3秒前
5秒前
6秒前
经卿完成签到 ,获得积分10
8秒前
9秒前
tang_c发布了新的文献求助10
9秒前
现代的盼望完成签到,获得积分10
10秒前
11秒前
chen完成签到,获得积分20
11秒前
11秒前
闪闪的雅柔应助Aaa采纳,获得10
11秒前
CodeCraft应助YGTRECE采纳,获得10
12秒前
soar发布了新的文献求助10
13秒前
mmyhn发布了新的文献求助10
14秒前
14秒前
徐执默发布了新的文献求助10
15秒前
倾夕月完成签到 ,获得积分10
15秒前
LWB完成签到,获得积分10
16秒前
我是老大应助Aaa采纳,获得10
16秒前
Jason完成签到,获得积分10
17秒前
阿雯完成签到,获得积分20
17秒前
soar完成签到,获得积分10
19秒前
晓星残月完成签到,获得积分10
19秒前
小熊发布了新的文献求助10
20秒前
20秒前
无聊的熠彤完成签到 ,获得积分10
20秒前
20秒前
稳重飞飞完成签到,获得积分10
20秒前
苗条的千易完成签到,获得积分10
21秒前
22秒前
xiaowan完成签到,获得积分10
22秒前
宜醉宜游宜睡应助ronnie采纳,获得10
22秒前
烟花应助米里迷路采纳,获得10
22秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975