Identification of biomarkers for acute leukemia via machine learning-based stemness index

生物 髓系白血病 计算生物学 基因 基因表达 遗传学 癌症研究
作者
Yitong Zhang,Dongzhe Liu,Fenglan Li,Ziwen Zhao,Xiqing Liu,Dixiang Gao,Yutong Zhang,Hui Li
出处
期刊:Gene [Elsevier]
卷期号:804: 145903-145903 被引量:6
标识
DOI:10.1016/j.gene.2021.145903
摘要

Traditional methods to understand leukemia stem cell (LSC)'s biological characteristics include constructing LSC-like cells and mouse models by transgenic or knock-in methods. However, there are some potential pitfalls in using this method, such as retroviral insertion mutagenesis, non-physiological level gene expression, non-physiological expansion, and difficulty to construct. The mRNAsi index for each sample of the Cancer Genome Atlas (TCGA) could avoid these potential pitfalls by machine learning. In this work, we aimed to construct a network of LSC genes utilizing the mRNAsi. First, mRNAsi value was analyzed with expressions distributions, survival analysis, age, and gender in acute myeloid leukemia (AML) samples. Then, we used the weighted gene co-expression network analysis (WGCNA) to construct modules of stemness genes. The correlation of the LSC genes transcription and interplay among LSC proteins was analyzed. We performed functional and pathway enrichment analysis to annotate stemness genes. Survival analysis further identified prognostic biomarkers by clinical data of TCGA and the Gene Expression Omnibus (GEO) database. We found that the result of mRNAsi overall survival is not significant, which may be due to the heterogeneity of AML in the stage of myeloid differentiation, French–American–British (FAB) classification systems. Enrichment analysis indicated that the stemness genes were biologically clustered as a group and mainly associated with cell cycle and mitosis. Moreover, 10 key genes (SNRNP40, RFC4, RFC5, CDC6, HSPE1, PA2G4, SNAP23P, DARS2, MIS18A, and HPRT1) were screened by survival analysis with the data from TCGA and GEO. Among them, RFC4 and RFC5 were the distinguished biomarkers for their double-validated prognostic value in both databases. Additionally, the expression of RFC4 and RFC5 had the same trend as mRNAsi score in FAB subtypes. In conclusion, our result demonstrated that mRNAsi based LSC-related genes were found to have strong interactions as a cluster. These genes, especially RFC4 and RFC5, could be the therapeutic targets for inhibiting the stemness characteristics of AML. This work is also a comprehensive pipeline for future cancer stem cell studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助zyy采纳,获得10
1秒前
1秒前
2秒前
2秒前
等待的风华完成签到,获得积分10
2秒前
Hoo发布了新的文献求助10
3秒前
5秒前
SHYSHYLONG完成签到,获得积分10
6秒前
6秒前
书晴发布了新的文献求助10
7秒前
正增长关注了科研通微信公众号
9秒前
Hello应助水果小王子采纳,获得10
10秒前
梅残风暖发布了新的文献求助10
10秒前
你好明天完成签到,获得积分20
12秒前
Lucas应助尺素寸心采纳,获得10
13秒前
lerrygg发布了新的文献求助20
14秒前
mhb完成签到 ,获得积分10
17秒前
CodeCraft应助岁岁十六-采纳,获得10
17秒前
小二郎应助书晴采纳,获得10
19秒前
水果小王子完成签到,获得积分10
20秒前
20秒前
Lucas应助太叔夜南采纳,获得10
22秒前
22秒前
Xi关闭了Xi文献求助
23秒前
万能图书馆应助格子布采纳,获得10
23秒前
爱听歌的艳完成签到,获得积分10
24秒前
mhb关注了科研通微信公众号
24秒前
尺素寸心发布了新的文献求助10
25秒前
25秒前
ZZQ完成签到,获得积分10
26秒前
26秒前
Green完成签到,获得积分10
27秒前
27秒前
稻草人发布了新的文献求助10
28秒前
碳烤小肥肠完成签到,获得积分10
31秒前
33秒前
34秒前
正增长发布了新的文献求助10
34秒前
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141384
求助须知:如何正确求助?哪些是违规求助? 2792400
关于积分的说明 7802329
捐赠科研通 2448585
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237