Predictive Performance of Current Nodal Staging Systems in Various Categories of Pancreatic Cancer

医学 胰腺导管腺癌 淋巴结 外科肿瘤学 胰腺癌 内科学 淋巴 肿瘤科 子群分析 切除术 总体生存率 腺癌 淋巴结切除术 癌症 放射科 外科 病理 置信区间
作者
Woohyung Lee,Jung Pyo Lee,Sarang Hong,Yejong Park,Bong Jun Kwak,Eunsung Jun,Ki Byung Song,Jae Sung Lee,Dae Youn Hwang,Song Cheol Kim
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:29 (1): 390-398 被引量:3
标识
DOI:10.1245/s10434-021-10641-7
摘要

Nodal staging systems (NSS) for pancreatic ductal adenocarcinoma (PDAC) classify patients on the basis of number of metastatic lymph nodes (MLN), metastatic/retrieved lymph node ratio (LNR), and log odds of positive LN (LODDS). The relative prognostic performance of these NSS, however, remains unclear.We identified 2584 patients who underwent surgery for PDAC between 2010 and 2019. Subgroups of each staging system were classified using K-adaptive partitioning method and assessed by comparing time-dependent areas under the curve (AUC) 5 years after surgery.Patients were subgrouped by MLN (0, 1-3, ≥ 4), LNR (0, 0-0.23, > 0.23), and LODDS (< - 3.5, - 3.5 to - 0.970, > - 0.97). All three NSS were independent prognostic factors for overall survival (OS) and recurrence-free survival (RFS). The AUCs for OS were comparable for the MLN (0.622), LNR (0.609), and LODDS (0.596) systems. Subgroup evaluation based on 12 retrieved lymph nodes (RLN), R1 resection, and extent of resection showed that the AUCs of the MLN and LNR NSS were comparable for OS and RFS regardless of the number of RLNs, R1 resection, and extent of resection. By contrast, the AUCs of the LODDS NSS were lower.The NSS based on the number of MLN is the best prognostic indicator, with prognostic performance comparable to the other NSS and greater convenience for practical use. This NSS was applicable regardless of the numbers of RLN, R1 resection, and extent of resection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水博士发布了新的文献求助10
1秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
2秒前
一线西风发布了新的文献求助10
2秒前
hanhanhan发布了新的文献求助50
2秒前
AJ发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
kkkhhh发布了新的文献求助10
4秒前
天天快乐应助SEV采纳,获得10
4秒前
悦耳安莲完成签到,获得积分20
4秒前
传奇3应助张123采纳,获得10
4秒前
zgh5615完成签到,获得积分10
4秒前
Taki发布了新的文献求助10
4秒前
星辰大海应助Duxize采纳,获得10
6秒前
6秒前
7秒前
cj发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
开心夏旋完成签到,获得积分10
11秒前
嘞是举仔应助专注的草丛采纳,获得20
12秒前
好好好完成签到,获得积分10
12秒前
洁净如音完成签到,获得积分10
12秒前
wheeler1发布了新的文献求助10
12秒前
浮云发布了新的文献求助30
13秒前
13秒前
13秒前
Redamancy完成签到,获得积分10
14秒前
盒子完成签到,获得积分20
14秒前
开心夏旋发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420