Image Recognition and Simulation Based on Distributed Artificial Intelligence

计算机科学 人工智能 人工神经网络 图像(数学) 计算机视觉 机器学习 模式识别(心理学) 深度学习 图像处理
作者
Tao Fan
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2021: 1-11
标识
DOI:10.1155/2021/5575883
摘要

This paper studies the traditional target classification and recognition algorithm based on Histogram of Oriented Gradients (HOG) feature extraction and Support Vector Machine (SVM) classification and applies this algorithm to distributed artificial intelligence image recognition. Due to the huge number of images, the general detection speed cannot meet the requirements. We have improved the HOG feature extraction algorithm. Using principal component analysis (PCA) to perform dimensionality reduction operations on HOG features and doing distributed artificial intelligence image recognition experiments, the results show that the image detection efficiency is slightly improved, and the detection speed is also improved. This article analyzes the reason for these changes because PCA mainly uses the useful feature information in HOG features. The parallelization processing of HOG features on graphics processing unit (GPU) is studied. GPU is used for high parallel and high-density calculations, and the calculation of HOG features is very complicated. Using GPU for parallelization of HOG features can make the calculation speed of HOG features improved. We use image experiments for the parallelized HOG feature algorithm. Experimental simulations show that the speed of distributed artificial intelligence image recognition is greatly improved. By analyzing the existing digital image recognition methods, an improved BP neural network algorithm is proposed. Under the premise of ensuring accuracy, the recognition speed of digital images is accelerated, the time required for recognition is reduced, real-time performance is guaranteed, and the effectiveness of the algorithm is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
likes发布了新的文献求助10
1秒前
dou完成签到 ,获得积分10
1秒前
大模型应助汤圆采纳,获得10
2秒前
2秒前
ZX完成签到,获得积分10
2秒前
天空发布了新的文献求助10
2秒前
3秒前
Orange应助微笑的鼠标采纳,获得30
4秒前
成成完成签到,获得积分0
4秒前
4秒前
小蘑菇应助Triumph采纳,获得10
4秒前
INGRID完成签到,获得积分20
4秒前
木槿完成签到,获得积分10
5秒前
曾经很天真完成签到,获得积分10
5秒前
所所应助Phi.Wang采纳,获得10
6秒前
流北爷完成签到,获得积分10
7秒前
17完成签到,获得积分10
9秒前
高高完成签到,获得积分10
9秒前
婷婷发布了新的文献求助10
9秒前
10秒前
pingpinghepipi完成签到,获得积分10
10秒前
10秒前
苏满天发布了新的文献求助10
11秒前
yyyyyy完成签到,获得积分10
11秒前
111发布了新的文献求助20
11秒前
12秒前
13秒前
13秒前
LCY完成签到,获得积分10
14秒前
lshl2000完成签到,获得积分10
14秒前
15秒前
likes完成签到,获得积分10
16秒前
小范完成签到 ,获得积分10
16秒前
席地而坐的大象完成签到,获得积分10
17秒前
天天快乐应助跳跳妈妈采纳,获得10
17秒前
17秒前
Triumph发布了新的文献求助10
17秒前
SciGPT应助yang采纳,获得10
17秒前
苏满天完成签到,获得积分10
17秒前
科研通AI5应助唠嗑在呐采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774793
求助须知:如何正确求助?哪些是违规求助? 3320610
关于积分的说明 10201149
捐赠科研通 3035379
什么是DOI,文献DOI怎么找? 1665498
邀请新用户注册赠送积分活动 796972
科研通“疑难数据库(出版商)”最低求助积分说明 757667