Phenotyping heart failure using model‐based analysis and physiology‐informed machine learning

心脏病学 内科学 心力衰竭 射血分数保留的心力衰竭 收缩性 医学 射血分数 舒张期 冲程容积 血流动力学 血压
作者
Edith Jones,E. Benjamin Randall,Scott L. Hummel,David M. Cameron,Daniel A. Beard,Brian E. Carlson
出处
期刊:The Journal of Physiology [Wiley]
卷期号:599 (22): 4991-5013 被引量:14
标识
DOI:10.1113/jp281845
摘要

To phenotype mechanistic differences between heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction, a closed-loop model of the cardiovascular system coupled with patient-specific transthoracic echocardiography (TTE) and right heart catheterization (RHC) data was used to identify key parameters representing haemodynamics. Thirty-one patient records (10 HFrEF, 21 HFpEF) were obtained from the Cardiovascular Health Improvement Project database at the University of Michigan. Model simulations were tuned to match RHC and TTE pressure, volume, and cardiac output measurements in each patient. The underlying physiological model parameters were plotted against model-based norms and compared between HFrEF and HFpEF. Our results confirm the main mechanistic parameter driving HFrEF is reduced left ventricular (LV) contractility, whereas HFpEF exhibits a heterogeneous phenotype. Conducting principal component analysis, k -means clustering, and hierarchical clustering on the optimized parameters reveal (i) a group of HFrEF-like HFpEF patients (HFpEF1), (ii) a classic HFpEF group (HFpEF2), and (iii) a group of HFpEF patients that do not consistently cluster (NCC). These subgroups cannot be distinguished from the clinical data alone. Increased LV active contractility ( p<0.001 ) and LV passive stiffness ( p<0.001 ) at rest are observed when comparing HFpEF2 to HFpEF1. Analysing the clinical data of each subgroup reveals that elevated systolic and diastolic LV volumes seen in both HFrEF and HFpEF1 may be used as a biomarker to identify HFrEF-like HFpEF patients. These results suggest that modelling of the cardiovascular system and optimizing to standard clinical data can designate subgroups of HFpEF as separate phenotypes, possibly elucidating patient-specific treatment strategies. KEY POINTS: Analysis of data from right heart catheterization (RHC) and transthoracic echocardiography (TTE) of heart failure (HF) patients using a closed-loop model of the cardiovascular system identifies key parameters representing haemodynamic cardiovascular function in patients with heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). Analysing optimized parameters representing cardiovascular function using machine learning shows mechanistic differences between HFpEF groups that are not seen analysing clinical data alone. HFpEF groups presented here can be subdivided into three subgroups: HFpEF1 described as 'HFrEF-like HFpEF', HFpEF2 as 'classic HFpEF', and a third group of HFpEF patients that do not consistently cluster. Focusing purely on cardiac function consistently captures the underlying dysfunction in HFrEF, whereas HFpEF is better characterized by dysfunction in the entire cardiovascular system. Our methodology reveals that elevated left ventricular systolic and diastolic volumes are potential biomarkers for identifying HFrEF-like HFpEF patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六月残雪完成签到 ,获得积分10
5秒前
8秒前
10秒前
陈鹿华完成签到 ,获得积分10
15秒前
不怕考试的赵无敌完成签到 ,获得积分10
15秒前
baibai发布了新的文献求助10
15秒前
lapin完成签到,获得积分10
24秒前
纯情的寻绿完成签到 ,获得积分10
24秒前
自然的含蕾完成签到 ,获得积分10
34秒前
36秒前
随心所欲完成签到 ,获得积分10
38秒前
执着的草丛完成签到,获得积分10
49秒前
oleskarabach完成签到,获得积分20
53秒前
you完成签到,获得积分10
57秒前
郑洋完成签到 ,获得积分10
1分钟前
1分钟前
hdc12138完成签到,获得积分10
1分钟前
美好颜完成签到,获得积分20
1分钟前
NNUsusan完成签到,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
joeqin完成签到,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
慧慧完成签到 ,获得积分10
1分钟前
Layace完成签到 ,获得积分10
1分钟前
fishss完成签到 ,获得积分10
1分钟前
高是个科研狗完成签到 ,获得积分10
1分钟前
ybheqiang123456完成签到,获得积分10
1分钟前
1分钟前
Glory完成签到 ,获得积分10
1分钟前
飞飞飞发布了新的文献求助30
2分钟前
笨笨青筠完成签到 ,获得积分10
2分钟前
丘比特应助美好颜采纳,获得10
2分钟前
baibai完成签到,获得积分10
2分钟前
轩辕德地完成签到,获得积分10
2分钟前
2分钟前
相南相北完成签到 ,获得积分10
2分钟前
2分钟前
Bennyz完成签到,获得积分10
2分钟前
天青色等烟雨完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736714
求助须知:如何正确求助?哪些是违规求助? 3280668
关于积分的说明 10020218
捐赠科研通 2997394
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656