Deep Learning for Detection of Pulmonary Metastasis on Chest Radiographs

医学 射线照相术 放射科 回顾性队列研究 转移 计算机辅助设计 内科学 癌症 工程类 工程制图
作者
Eui Jin Hwang,Jeong Su Lee,Jong Hyuk Lee,Seung Hong Choi,Jae Hyun Kim,Kyu Sung Choi,Tae Won Choi,Tae‐Hyung Kim,Jin Mo Goo,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (2): 455-463 被引量:23
标识
DOI:10.1148/radiol.2021210578
摘要

Background A computer-aided detection (CAD) system may help surveillance for pulmonary metastasis at chest radiography in situations where there is limited access to CT. Purpose To evaluate whether a deep learning (DL)-based CAD system can improve diagnostic yield for newly visible lung metastasis on chest radiographs in patients with cancer. Materials and Methods A regulatory-approved CAD system for lung nodules was implemented to interpret chest radiographs from patients referred by the medical oncology department in clinical practice. In this retrospective diagnostic cohort study, chest radiographs interpreted with assistance from a CAD system after the implementation (January to April 2019, CAD-assisted interpretation group) and those interpreted before the implementation (September to December 2018, conventional interpretation group) of the CAD system were consecutively included. The diagnostic yield (frequency of true-positive detections) and false-referral rate (frequency of false-positive detections) of formal reports of chest radiographs for newly visible lung metastasis were compared between the two groups using generalized estimating equations. Propensity score matching was performed between the two groups for age, sex, and primary cancer. Results A total of 2916 chest radiographs from 1521 patients (1546 men, 1370 women; mean age, 62 years) and 5681 chest radiographs from 3456 patients (2941 men, 2740 women; mean age, 62 years) were analyzed in the CAD-assisted interpretation and conventional interpretation groups, respectively. The diagnostic yield for newly visible metastasis was higher in the CAD-assisted interpretation group (0.86%, 25 of 2916 [95% CI: 0.58, 1.3] vs 0.32%, 18 of 568 [95% CI: 0.20, 0.50%]; P = .004). The false-referral rate in the CAD-assisted interpretation group (0.34%, 10 of 2916 [95% CI: 0.19, 0.64]) was not inferior to that in the conventional interpretation group (0.25%, 14 of 5681 [95% CI: 0.15, 0.42]) at the noninferiority margin of 0.5% (95% CI of difference: -0.15, 0.35). Conclusion A deep learning-based computer-aided detection system improved the diagnostic yield for newly visible metastasis on chest radiographs in patients with cancer with a similar false-referral rate. © RSNA, 2021 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助廾匸采纳,获得10
2秒前
脑洞疼应助焚心绚华绘采纳,获得10
2秒前
2秒前
魔幻的小蘑菇完成签到 ,获得积分10
3秒前
踏雪完成签到,获得积分10
3秒前
英姑应助Chihiro采纳,获得10
4秒前
ambernameswu完成签到 ,获得积分10
5秒前
xiaofan完成签到,获得积分10
5秒前
5656发布了新的文献求助10
5秒前
斯文败类应助安静的静槐采纳,获得10
7秒前
思源应助刘胖胖采纳,获得10
7秒前
8秒前
8秒前
NNUsusan完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助10
12秒前
Nadine发布了新的文献求助10
13秒前
陈诗柳完成签到 ,获得积分10
13秒前
14秒前
17835152738完成签到,获得积分10
15秒前
15秒前
16秒前
18秒前
20秒前
Warwick完成签到,获得积分10
20秒前
感激不尽发布了新的文献求助10
20秒前
望北完成签到 ,获得积分10
21秒前
5656发布了新的文献求助10
23秒前
24秒前
25秒前
乐乐应助邸增楼采纳,获得10
25秒前
26秒前
万能图书馆应助欣欣采纳,获得10
27秒前
29秒前
liyu发布了新的文献求助10
30秒前
wanli完成签到,获得积分10
31秒前
32秒前
32秒前
如初完成签到,获得积分10
34秒前
fffff完成签到,获得积分10
35秒前
Orin完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667816
求助须知:如何正确求助?哪些是违规求助? 3226284
关于积分的说明 9768970
捐赠科研通 2936235
什么是DOI,文献DOI怎么找? 1608336
邀请新用户注册赠送积分活动 759642
科研通“疑难数据库(出版商)”最低求助积分说明 735434