Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 操作系统 量子力学
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:6
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的飞风完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得50
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得30
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
绿豆饼完成签到 ,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
拼搏向上完成签到,获得积分10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
小巧凡霜完成签到,获得积分20
2秒前
李爱国应助huanghan采纳,获得10
2秒前
imlaoji发布了新的文献求助10
2秒前
白小超人完成签到 ,获得积分10
2秒前
乐情发布了新的文献求助20
3秒前
科研通AI6应助hyhyhyhy采纳,获得10
3秒前
大王完成签到,获得积分10
3秒前
4秒前
wp关注了科研通微信公众号
5秒前
谨慎盼山完成签到,获得积分10
7秒前
小杜超爱毛肚完成签到 ,获得积分20
8秒前
9秒前
万能图书馆应助memes采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
Chu_JH完成签到,获得积分10
9秒前
10秒前
BXZ发布了新的文献求助10
10秒前
su完成签到,获得积分10
11秒前
英俊的铭应助猪头采纳,获得10
11秒前
桂鱼完成签到 ,获得积分10
11秒前
renyi完成签到,获得积分10
11秒前
丘比特应助友好凡霜采纳,获得10
12秒前
12秒前
jdp发布了新的文献求助10
13秒前
13秒前
瓦尔登包完成签到 ,获得积分10
13秒前
梅梅美完成签到,获得积分20
13秒前
小刘完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011565
求助须知:如何正确求助?哪些是违规求助? 4252987
关于积分的说明 13252789
捐赠科研通 4055544
什么是DOI,文献DOI怎么找? 2218272
邀请新用户注册赠送积分活动 1227898
关于科研通互助平台的介绍 1149981