Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 操作系统 量子力学
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:17
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助明硕阳采纳,获得10
刚刚
缥缈蓉发布了新的文献求助10
刚刚
刘文静完成签到,获得积分10
刚刚
1秒前
1秒前
缓慢含烟完成签到,获得积分10
1秒前
2秒前
无花果应助王会跑采纳,获得10
2秒前
滕0001发布了新的文献求助10
3秒前
pianokjt发布了新的文献求助10
3秒前
3秒前
十一完成签到 ,获得积分10
3秒前
3秒前
寻梦完成签到,获得积分10
4秒前
失眠咖啡豆完成签到 ,获得积分10
4秒前
joybee完成签到,获得积分0
4秒前
Quan完成签到,获得积分10
4秒前
手术刀发布了新的文献求助50
5秒前
lucky完成签到 ,获得积分10
5秒前
haizz完成签到 ,获得积分10
5秒前
斑马兽完成签到,获得积分10
5秒前
ghost举报sns八丘求助涉嫌违规
6秒前
善学以致用应助weiweiwei采纳,获得10
6秒前
简化为完成签到,获得积分10
7秒前
7秒前
zhn0607发布了新的文献求助10
7秒前
犹豫的君浩完成签到 ,获得积分10
7秒前
alyza发布了新的文献求助10
7秒前
bkagyin应助西西弗斯玩石头采纳,获得10
7秒前
天天快乐应助太阳采纳,获得10
7秒前
8秒前
uu完成签到,获得积分10
8秒前
8秒前
耿昭完成签到,获得积分10
8秒前
Ceaser完成签到,获得积分10
8秒前
科目三应助PangXidan采纳,获得10
8秒前
stst完成签到,获得积分10
8秒前
BulingQAQ完成签到,获得积分10
9秒前
yznfly应助SG采纳,获得50
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849