Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 量子力学 操作系统
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:17
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
he发布了新的文献求助10
刚刚
小满发布了新的文献求助10
1秒前
1秒前
好了没了发布了新的文献求助10
2秒前
幻海潮生完成签到,获得积分10
3秒前
3秒前
AN应助青牛采纳,获得200
4秒前
我是老大应助赵浩楠采纳,获得10
5秒前
鲤鱼笑南完成签到,获得积分10
5秒前
周健发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
香蕉觅云应助光亮念文采纳,获得10
6秒前
Flames完成签到,获得积分10
6秒前
WT完成签到,获得积分10
6秒前
departure完成签到,获得积分10
7秒前
Yixuan_Zou发布了新的文献求助10
7秒前
英俊的铭应助小满采纳,获得10
8秒前
科研通AI6应助bcl采纳,获得10
10秒前
自觉紫安完成签到,获得积分10
10秒前
10秒前
10秒前
愉快的花卷完成签到,获得积分10
11秒前
wop111应助深情的幻桃采纳,获得30
11秒前
shuaiBsen完成签到,获得积分10
11秒前
石榴姐姐完成签到 ,获得积分10
12秒前
希望天下0贩的0应助Fei_U采纳,获得30
12秒前
13秒前
嘻嘻完成签到,获得积分10
14秒前
丘比特应助kk采纳,获得10
14秒前
小满完成签到,获得积分10
15秒前
15秒前
15秒前
18秒前
18秒前
胖呆呆发布了新的文献求助10
18秒前
蕾蕾发布了新的文献求助10
18秒前
zr发布了新的文献求助10
19秒前
Yixuan_Zou完成签到,获得积分10
19秒前
深情安青应助孤独的鞋垫采纳,获得10
20秒前
Picopy发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091