已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 量子力学 操作系统
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:17
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
发发发布了新的文献求助10
1秒前
2秒前
fr0zen发布了新的文献求助10
3秒前
4秒前
4秒前
sensenzou发布了新的文献求助10
5秒前
汉堡包应助发发采纳,获得10
6秒前
付涵发布了新的文献求助10
7秒前
戈惜完成签到 ,获得积分10
8秒前
8秒前
8秒前
ccf完成签到 ,获得积分10
9秒前
西瓜妹发布了新的文献求助10
9秒前
Qiancheng发布了新的文献求助10
10秒前
FashionBoy应助FSDF采纳,获得10
10秒前
开朗含海完成签到 ,获得积分10
11秒前
12秒前
欣喜惜海完成签到 ,获得积分10
12秒前
ruopiao发布了新的文献求助10
13秒前
北地风情完成签到,获得积分10
13秒前
清脆的大娘完成签到,获得积分10
13秒前
13秒前
14秒前
清爽远航完成签到,获得积分10
14秒前
可乐鸡翅完成签到,获得积分10
15秒前
耳机单蹦发布了新的文献求助30
18秒前
充电宝应助龙儿飞飞飞采纳,获得10
22秒前
23秒前
balabala完成签到 ,获得积分10
23秒前
24秒前
善学以致用应助西瓜妹采纳,获得10
25秒前
朴实一鸣发布了新的文献求助10
27秒前
27秒前
sakyadamo发布了新的文献求助10
29秒前
永泽涉发布了新的文献求助10
30秒前
31秒前
郜以寒发布了新的文献求助10
32秒前
深情安青应助YT采纳,获得10
33秒前
34秒前
Mark发布了新的文献求助10
35秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502249
求助须知:如何正确求助?哪些是违规求助? 4598249
关于积分的说明 14463199
捐赠科研通 4531818
什么是DOI,文献DOI怎么找? 2483625
邀请新用户注册赠送积分活动 1466915
关于科研通互助平台的介绍 1439528