Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 操作系统 量子力学
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:6
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明天过后发布了新的文献求助10
1秒前
可不完成签到,获得积分10
1秒前
2秒前
wood发布了新的文献求助30
2秒前
苦难诗社发布了新的文献求助10
2秒前
零立方发布了新的文献求助80
2秒前
852应助123456采纳,获得10
3秒前
3秒前
星辰咏完成签到,获得积分10
3秒前
4秒前
bkagyin应助卢卢采纳,获得10
4秒前
李爱国应助小蛇玩采纳,获得10
4秒前
lx完成签到,获得积分20
5秒前
Jasper应助WTT采纳,获得10
5秒前
5秒前
李健应助想好好搞事业采纳,获得10
5秒前
yck1027发布了新的文献求助10
6秒前
6秒前
脑洞疼应助negue采纳,获得10
7秒前
Aba关闭了Aba文献求助
8秒前
轻松的兔子完成签到,获得积分10
8秒前
丘比特应助大气的黑夜采纳,获得10
9秒前
搜集达人应助xxxx_w采纳,获得10
9秒前
wsz发布了新的文献求助10
9秒前
wood完成签到,获得积分10
9秒前
10秒前
哈哈哈哈哈哈完成签到,获得积分10
10秒前
11秒前
11秒前
ding应助眯眯眼的老五采纳,获得10
11秒前
Akim应助momo采纳,获得10
12秒前
12秒前
13秒前
汉堡包应助书雪采纳,获得10
13秒前
BAEKHYUNLUCKY发布了新的文献求助10
13秒前
故笺完成签到,获得积分10
13秒前
科研通AI6应助飞飞采纳,获得10
14秒前
15秒前
Georges-09发布了新的文献求助10
15秒前
微笑柜子关注了科研通微信公众号
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646