Deep Learning Based Process Analytics Model for Predicting Type 2 Diabetes Mellitus

人工智能 计算机科学 人工神经网络 分析 机器学习 深度学习 水准点(测量) 预处理器 肾脏疾病 过程(计算) 数据挖掘 医学 内科学 大地测量学 操作系统 地理
作者
A. Thasil Mohamed,Sundar Santhoshkumar
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:40 (1): 191-205 被引量:2
标识
DOI:10.32604/csse.2022.016754
摘要

Process analytics is one of the popular research domains that advanced in the recent years.Process analytics encompasses identification, monitoring, and improvement of the processes through knowledge extraction from historical data.The evolution of Artificial Intelligence (AI)-enabled Electronic Health Records (EHRs) revolutionized the medical practice.Type 2 Diabetes Mellitus (T2DM) is a syndrome characterized by the lack of insulin secretion.If not diagnosed and managed at early stages, it may produce severe outcomes and at times, death too.Chronic Kidney Disease (CKD) and Coronary Heart Disease (CHD) are the most common, long-term and life-threatening diseases caused by T2DM.Therefore, it becomes inevitable to predict the risks of CKD and CHD in T2DM patients.The current research article presents automated Deep Learning (DL)based Deep Neural Network (DNN) with Adagrad Optimization Algorithm i.e., DNN-AGOA model to predict CKD and CHD risks in T2DM patients.The paper proposes a risk prediction model for T2DM patients who may develop CKD or CHD.This model helps in alarming both T2DM patients and clinicians in advance.At first, the proposed DNN-AGOA model performs data preprocessing to improve the quality of data and make it compatible for further processing.Besides, a Deep Neural Network (DNN) is employed for feature extraction, after which sigmoid function is used for classification.Further, Adagrad optimizer is applied to improve the performance of DNN model.For experimental validation, benchmark medical datasets were used and the results were validated under several dimensions.The proposed model achieved a maximum precision of 93.99%, recall of 94.63%, specificity of 73.34%, accuracy of 92.58%, and F-score of 94.22%.The results attained through experimentation established that the proposed DNN-AGOA model has good prediction capability over other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yangyang完成签到,获得积分20
1秒前
豚豚完成签到,获得积分10
3秒前
紫金发布了新的文献求助10
3秒前
4秒前
4秒前
yangyang发布了新的文献求助10
4秒前
wes完成签到,获得积分20
5秒前
曾玉婷发布了新的文献求助10
6秒前
小二郎应助追佩奇十条街采纳,获得10
7秒前
买桃子去发布了新的文献求助10
8秒前
灵巧妙芙发布了新的文献求助10
9秒前
wes发布了新的文献求助10
10秒前
10秒前
pluto应助嘎嘎采纳,获得10
14秒前
bxw发布了新的文献求助10
15秒前
科研通AI5应助晨曦采纳,获得10
18秒前
Lilith完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
善学以致用应助研友_LkKzoL采纳,获得10
21秒前
ZhouTY完成签到,获得积分10
22秒前
梓然发布了新的文献求助10
22秒前
23秒前
24秒前
AiQi发布了新的文献求助10
24秒前
25秒前
zhscu完成签到,获得积分10
26秒前
26秒前
可爱的函函应助12采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
29秒前
29秒前
Orange应助科研通管家采纳,获得10
29秒前
元谷雪应助科研通管家采纳,获得10
29秒前
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738341
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026652
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645324
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901