清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis

计算机科学 联营 人工智能 神经影像学 模式识别(心理学) 人类连接体项目 机器学习 功能磁共振成像 图形 连接体 心理学 神经科学 功能连接 理论计算机科学
作者
Xiaoxiao Li,Yuan Zhou,Nicha C. Dvornek,Muhan Zhang,Siyuan Gao,Juntang Zhuang,Dustin Scheinost,Lawrence H. Staib,Pamela Ventola,James S. Duncan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:74: 102233-102233 被引量:383
标识
DOI:10.1016/j.media.2021.102233
摘要

Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms—unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss—on pooling results to encourage reasonable ROI-selection and provide flexibility to encourage either fully individual- or patterns that agree with group-level data. We apply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show a high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Our code is available at https://github.com/xxlya/BrainGNN_Pytorch
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
27秒前
量子星尘发布了新的文献求助10
40秒前
43秒前
紫熊发布了新的文献求助10
54秒前
斯文败类应助科研通管家采纳,获得10
57秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
shyの煜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
所得皆所愿完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Dieubium发布了新的文献求助30
2分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
紫熊发布了新的文献求助30
2分钟前
muriel完成签到,获得积分10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538