Identifying Active Compounds and Mechanism of Camellia nitidissima Chi on Anti-Colon Cancer by Network Pharmacology and Experimental Validation

AKT1型 小桶 系统药理学 计算生物学 生物 木犀草素 机制(生物学) 对接(动物) 药理学 PI3K/AKT/mTOR通路 基因本体论 基因 信号转导 药品 生物化学 槲皮素 医学 基因表达 护理部 抗氧化剂 哲学 认识论
作者
Yiwei Chen,Erhong Hao,Fan Zhang,Zhenhong Du,Jinling Xie,Feng Chen,Chunlin Yu,Xin Hou,Jiagang Deng
出处
期刊:Evidence-based Complementary and Alternative Medicine [Hindawi Publishing Corporation]
卷期号:2021: 1-15 被引量:2
标识
DOI:10.1155/2021/7169211
摘要

Camellia nitidissima Chi (CNC) is a traditional Chinese medicine (TCM) with anticancer property. However, its underlying mechanisms of anti-colon cancer (CC) remain unknown. Therefore, a systematic approach is proposed in the present study to elucidate the anticancer mechanisms of CNC based on network pharmacology and experimental validation. Initially, the potential active ingredients of CNC were verified via the TCMSP database based on the oral bioavailability (OB) and drug-likeness (DL) terms. Hub targets of CNC were acquired from SwissTarget prediction and TCMSP databases, and target genes related to CC were gathered from GeneCards and OMIM databases. Cytoscape was used to establish the compound-target networks. Next, the hub target genes collected from the CNC and CC were parsed via GO and KEGG analysis. Results of GO and KEGG analysis reveal that quercetin and luteolin in CNC, VEGFA and AKT1 targets, and PI3K-Akt pathway were associated with the suppression of CC. Besides, the result of molecular docking unveils that VEGFA demonstrates the most powerful binding affinity among the binding outcomes. This finding was successfully validated using in vitro HCT116 cell model experiment. In conclusion, this study proved the usefulness of integrating network pharmacology with in vitro experiments in the elucidation of underlying molecular mechanisms of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小二完成签到,获得积分10
2秒前
iNk应助陈媛采纳,获得10
2秒前
认真的烧鹅完成签到,获得积分20
2秒前
HoHo完成签到 ,获得积分10
3秒前
Alice完成签到,获得积分10
3秒前
佳啊发布了新的文献求助10
3秒前
5秒前
Oliver完成签到 ,获得积分10
5秒前
xiaogao要读博完成签到,获得积分10
6秒前
Hello应助念姬采纳,获得10
8秒前
科研圣体发布了新的文献求助10
11秒前
11秒前
12秒前
所所应助细心的恋风采纳,获得10
13秒前
JamesPei应助姽稚采纳,获得10
14秒前
Xieyusen发布了新的文献求助10
16秒前
浮生完成签到 ,获得积分10
17秒前
18秒前
是的发放发布了新的文献求助10
19秒前
小马甲应助王佳豪采纳,获得10
20秒前
21秒前
23秒前
26秒前
27秒前
27秒前
义气的亦寒完成签到,获得积分10
28秒前
29秒前
吴晨曦完成签到,获得积分10
29秒前
Lynne完成签到,获得积分10
29秒前
彭于晏应助佳啊采纳,获得10
30秒前
是的发放完成签到,获得积分10
31秒前
LXY完成签到,获得积分10
31秒前
王佳豪发布了新的文献求助10
32秒前
32秒前
32秒前
月亮门儿完成签到 ,获得积分10
36秒前
哦哟发布了新的文献求助10
36秒前
exosome完成签到,获得积分10
38秒前
zby完成签到,获得积分10
39秒前
HJJHJH发布了新的文献求助50
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432