光催化
沸石
纳米复合材料
傅里叶变换红外光谱
材料科学
催化作用
离子交换
核化学
化学工程
抗菌活性
化学
纳米技术
离子
有机化学
细菌
工程类
生物
遗传学
作者
Niloufar Torkian,Abbas Bahrami,Afrouzossadat Hosseini‐Abari,Mohamad Mohsen Momeni,Meisam Abdolkarimi-Mahabadi,Ahmad Bayat,Pejman Hajipour,Hamed Amini Rourani,Mohammad Saeid Abbasi,Sima Torkian,Yangping Wen,M. Yazdan Mehr,Akbar Hojjati‐Najafabadi
标识
DOI:10.1016/j.envres.2021.112157
摘要
This paper investigates the synthesis, antibacterial, and photocatalytic properties of silver ion-exchanged natural zeolite/TiO2 photocatalyst nanocomposite. Zeolite is known to have a porous surface structure, making it an ideal substrate and framework in different nanocomposites. Moreover, natural zeolite has a superior thermal and chemical stability, with hardly any reactivity with chemicals. Finding an effective and low-cost method to remove both antibiotics and bacteria from water resources has become a vital global issue due to the worldwide excessive use of chemicals and antibiotics. This research aims to propose a facile method to synthesize Ag-ion-exchanged zeolite/TiO2 catalyst for anti-bacterial purposes and photocatalytic removal of atibiotics from wastewaters. TiO2 particles were deposited on the surface of natural zeolite. Ag ion exchanging was performed via a liquid ion-exchange method using 0.1 M AgNO3 solution. X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) were used to evaluate the structure of synthesized powders. Antibacterial activities of samples were assessed, using Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 by disc diffusion method. It was shown that Ag-containing nanocomposite samples have an improved antibacterial performance in both cases. Results showed that the synthesized catalyst has promising potentials in wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI