吸附
纤维素
气凝胶
水溶液
环境友好型
化学工程
朗缪尔吸附模型
金属
化学
材料科学
有机化学
纳米技术
生态学
生物
工程类
作者
Hina Iqbal Syeda,Pow‐Seng Yap
标识
DOI:10.1016/j.scitotenv.2021.150606
摘要
Contamination of the aquatic ecosystem by heavy metals is a growing concern that has yet to be addressed with an efficient, cost-effective and environmentally-friendly solution. Heavy metals occur naturally in the earth's crust and also result from anthropogenic activities. Due to the rapid increase in industrialization, there is an increase in consumer demands across various industries such as metal processing, mining sector, agricultural activities, etc. and this has led to an increase in heavy metal concentrations in the aqueous environment. Cellulose-based aerogels are a novel third-generation of aerogels that have recently attracted a lot of attention due to their high adsorption efficiency, eco-friendly prospects and cost effectiveness. In this review, recent literature on cellulose-based aerogel adsorbents used for the removal of heavy metals from aqueous solution has been compiled. The preparation of cellulose-based aerogels, adsorption mechanisms, effects of experimental factors such as pH, temperature, contact time, initial metal concentration and adsorbent dose have been discussed. In addition, cost analysis of cellulose-based adsorbents and some challenges in this research field along with recommendations of improvements have been presented. It can be concluded that functionalizing of cellulose-based aerogels with amine groups, thiol groups, other compounds such as nanobentonite and chitosan results in very high adsorption capacities. The adsorption studies revealed that pseudo-second-order kinetic model was the most commonly encountered adsorption kinetic model, and the most commonly encountered adsorption isotherm model was the Langmuir isotherm model. The main adsorption mechanisms were electrostatic interaction, complexation and ion exchange.
科研通智能强力驱动
Strongly Powered by AbleSci AI