Identification of multi-concentration aromatic fragrances with electronic nose technology using a support vector machine

电子鼻 支持向量机 人工智能 模式识别(心理学) 气味 计算机科学 平滑的 生物系统 化学 计算机视觉 生物 有机化学
作者
Sun-Tae Kim,Il-Hwan Choi,Hui Li
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:13 (40): 4710-4717 被引量:9
标识
DOI:10.1039/d1ay00788b
摘要

Due to the concentration effect, there is a major challenge for the electronic nose system to identify different odor samples with multiple concentrations. The development of artificial intelligence provides new ways to solve such problems. This article attempts to use support vector machine (SVM) technology to distinguish four fragrance samples with three concentrations, including roman chamomile, jasmine, lavender, and orange. The responses of these samples were collected by an 11-sensor electronic nose. After baseline correction, data smoothing, and removal of non-responsive sensors, the signals of 8 sensors were used for subsequent model analysis. Due to the concentration effect, when the primary signal intensities were used as features, the electronic nose cannot distinguish between different aroma types (accuracy less than 50%). When the normalized maximum signal intensity Xmr was used, the accuracy of the model was greatly improved. Graphic analysis and PCA showed that the normalized feature effectively eliminates the concentration effect, and appropriately reducing some sensors can enhance the ability to distinguish odors. The SVM correctly classified all 14 aromas when feeding 8 sets of data to train the radial kernel C-classification SVM. This showed that the cross-interference of the sensors was reduced, and the resolving power of the electronic nose was enhanced after the feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jake发布了新的文献求助10
刚刚
1秒前
111发布了新的文献求助10
3秒前
March完成签到,获得积分10
3秒前
大脸猫完成签到 ,获得积分10
4秒前
Owen应助wwl采纳,获得10
5秒前
大意的雨双完成签到 ,获得积分10
6秒前
健忘鞋垫完成签到,获得积分10
6秒前
傻瓜子发布了新的文献求助10
6秒前
一棵草完成签到,获得积分10
8秒前
高木同学完成签到,获得积分10
9秒前
zss完成签到 ,获得积分10
9秒前
小鱼马完成签到,获得积分10
10秒前
sunsun10086完成签到 ,获得积分10
11秒前
wjy完成签到,获得积分10
12秒前
背完单词好睡觉完成签到 ,获得积分10
12秒前
小马甲应助111采纳,获得10
13秒前
阿飘应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
阿飘应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
myl应助科研通管家采纳,获得10
14秒前
黑猫发布了新的文献求助10
17秒前
赘婿应助gfbh采纳,获得10
18秒前
活泼新儿发布了新的文献求助10
19秒前
偷看星星完成签到 ,获得积分10
20秒前
111完成签到,获得积分20
24秒前
xhsz1111完成签到 ,获得积分10
24秒前
Yara.H发布了新的文献求助10
25秒前
落林樾完成签到 ,获得积分10
26秒前
steven完成签到 ,获得积分10
26秒前
苹果完成签到,获得积分10
27秒前
大模型应助不知道叫什么采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761109
求助须知:如何正确求助?哪些是违规求助? 3305034
关于积分的说明 10131873
捐赠科研通 3018967
什么是DOI,文献DOI怎么找? 1657885
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604