亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of multi-concentration aromatic fragrances with electronic nose technology using a support vector machine

电子鼻 支持向量机 人工智能 模式识别(心理学) 气味 计算机科学 平滑的 生物系统 化学 计算机视觉 生物 有机化学
作者
Sun-Tae Kim,Il-Hwan Choi,Hui Li
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:13 (40): 4710-4717 被引量:9
标识
DOI:10.1039/d1ay00788b
摘要

Due to the concentration effect, there is a major challenge for the electronic nose system to identify different odor samples with multiple concentrations. The development of artificial intelligence provides new ways to solve such problems. This article attempts to use support vector machine (SVM) technology to distinguish four fragrance samples with three concentrations, including roman chamomile, jasmine, lavender, and orange. The responses of these samples were collected by an 11-sensor electronic nose. After baseline correction, data smoothing, and removal of non-responsive sensors, the signals of 8 sensors were used for subsequent model analysis. Due to the concentration effect, when the primary signal intensities were used as features, the electronic nose cannot distinguish between different aroma types (accuracy less than 50%). When the normalized maximum signal intensity Xmr was used, the accuracy of the model was greatly improved. Graphic analysis and PCA showed that the normalized feature effectively eliminates the concentration effect, and appropriately reducing some sensors can enhance the ability to distinguish odors. The SVM correctly classified all 14 aromas when feeding 8 sets of data to train the radial kernel C-classification SVM. This showed that the cross-interference of the sensors was reduced, and the resolving power of the electronic nose was enhanced after the feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
白嫖论文完成签到 ,获得积分10
2秒前
jyy完成签到,获得积分10
24秒前
24秒前
桃子完成签到 ,获得积分10
41秒前
不去明知山完成签到 ,获得积分10
45秒前
桃子牛肉酱完成签到 ,获得积分10
48秒前
49秒前
无花果应助科研通管家采纳,获得100
54秒前
shlw完成签到,获得积分10
58秒前
CipherSage应助sonya采纳,获得10
1分钟前
2分钟前
2分钟前
Sunday完成签到 ,获得积分10
2分钟前
2分钟前
彻底完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
阿韦关注了科研通微信公众号
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
江姜酱先生完成签到,获得积分10
4分钟前
4分钟前
4分钟前
sonya发布了新的文献求助10
4分钟前
完美世界应助小猪采纳,获得10
4分钟前
4分钟前
4分钟前
小猪发布了新的文献求助10
4分钟前
Akim应助ceeray23采纳,获得20
5分钟前
5分钟前
5分钟前
6分钟前
爆米花应助niu采纳,获得10
6分钟前
6分钟前
四斤瓜完成签到 ,获得积分10
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995453
求助须知:如何正确求助?哪些是违规求助? 3535263
关于积分的说明 11267227
捐赠科研通 3275037
什么是DOI,文献DOI怎么找? 1806530
邀请新用户注册赠送积分活动 883349
科研通“疑难数据库(出版商)”最低求助积分说明 809782