Strategies to determine lactose in cow milk by mid infrared spectroscopy

乳糖 偏最小二乘回归 化学计量学 食品科学 数学 化学 线性回归 校准 统计 色谱法
作者
Pollyana Augusto Pinto,Amanda Carolina Souza Andrada Anconi,Luiz Ronaldo de Abreu,Elisângela Jaqueline Magalhães,Cleiton Antônio Nunes
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:104: 104176-104176 被引量:12
标识
DOI:10.1016/j.jfca.2021.104176
摘要

The lactose-free dairy sector has been growing considerably, requiring rapid and accurate methodologies for lactose determination. The present work aimed to explore spectroscopy and statistic strategies to estimate the lactose content in cow milk using mid infrared spectroscopy (MIRS) and chemometric tools. Firstly, regular and lactose-free milk discrimination was successfully performed using the spectral range of 935−1200 cm−1 along with Partial Least Squares Discriminant Analysis (PLS-DA). Secondly, to estimate the percentage of lactose in lactose-free milk, calibration models were developed by Partial Least Squares (PLS), Multiple Linear Regression (MLR), and Least Squares Regression (MQ) with and without spectral transformation. The three methods proved to be efficient, with the best performance obtained by the PLS model using Multiplicative Scatter Correction from 935 to 1200 cm−1, with low RMSE values and R2 > 0.99 for calibration, cross and external validation. Furthermore, high-performance liquid chromatography (HPLC) was used to attest the good predictive ability of lactose content in lactose-free milk by MIRS-PLS. Finally, the models were used to monitor the lactose content during the enzymatic hydrolysis, showing the applicability and efficiency of the proposed method. Therefore, MIRS associated with chemometric tools constitutes a method with a high capacity to discriminate between regular and lactose-free milk, as well as to predict lactose content in both milk samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Japrin完成签到,获得积分10
刚刚
织诗成锦完成签到,获得积分10
1秒前
2秒前
开朗的翠霜完成签到,获得积分10
6秒前
Luna完成签到 ,获得积分10
7秒前
刘晓璐完成签到,获得积分10
7秒前
kvning完成签到,获得积分10
7秒前
段仁杰完成签到,获得积分10
8秒前
Anderson123完成签到,获得积分0
8秒前
ZHOUCHENG完成签到,获得积分0
9秒前
Anderson732完成签到,获得积分10
9秒前
10秒前
11秒前
火星上问柳完成签到,获得积分10
11秒前
11秒前
滕皓轩发布了新的文献求助30
11秒前
乐观的颦完成签到,获得积分10
12秒前
星辰大海应助11采纳,获得10
13秒前
yaomax完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
guozizi发布了新的文献求助30
15秒前
15秒前
zy发布了新的文献求助10
16秒前
陈嘟嘟发布了新的文献求助10
16秒前
kk完成签到 ,获得积分10
16秒前
llya完成签到,获得积分10
16秒前
16秒前
木悠完成签到,获得积分10
18秒前
轻松雨旋完成签到 ,获得积分10
18秒前
19秒前
上官若男应助yu采纳,获得10
21秒前
执着冬亦发布了新的文献求助10
22秒前
22秒前
zy关闭了zy文献求助
23秒前
25秒前
25秒前
kk完成签到 ,获得积分10
25秒前
lyp完成签到 ,获得积分10
26秒前
情怀应助辛勤的尔曼采纳,获得10
28秒前
像风一样自由完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814