Development of novel PMV-based HVAC control strategies using a mean radiant temperature prediction model by machine learning in Kuwaiti climate

热舒适性 暖通空调 空调 能源消耗 平均辐射温度 控制器(灌溉) 环境科学 人工神经网络 线性回归 计算机科学 模拟 气象学 工作温度 机器学习 工程类 气候变化 地理 电气工程 生态学 生物 机械工程 农学
作者
Jaesung Park,Haneul Choi,Dong-Hyun Kim,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:206: 108357-108357 被引量:23
标识
DOI:10.1016/j.buildenv.2021.108357
摘要

Kuwait is one of the hottest regions globally, where air conditioners (ACs) are indispensable for indoor thermal environment. However, the AC energy consumption has reached excessive levels mainly due to the energy-intensive behavior of occupants who don't frequently control the AC set temperature. This study aims to develop Thermal Comfort-based Controller (TCC) using predicted mean vote (PMV) control and to evaluate thermal environment and energy efficiency when TCC is applied to AC control. TCC is a system that automatically controls rooftop packaged AC which is widely used in Kuwaiti houses. As mean radiant temperature (MRT) is one of the most important value for PMV control in areas such as Kuwait where solar radiation is strong and the outdoor air temperature is very high this study developed, machine learning models to effectively estimate MRT without actual measurement. First, the experimental results, conducted at Real-scale Climatic Environment Chamber, revealed that the actual measured MRT was 1.5 °C higher than the air temperature on average, indicating the possibility of underestimating PMV in Kuwaiti climate. Next, machine learning models (i.e., linear regression, regression tree, and artificial neural network) to estimate MRT automatically were developed and evaluated through computer simulations. The simulation results proved that machine learning models can accurately estimate MRT with only a few data that are easily collected in residential buildings. As a result, when the three estimation models were used, it was closer to the PMV range (−0.2 to +0.2), and the energy consumption was also reduced by more than 10%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张涛完成签到,获得积分10
刚刚
1秒前
干秋白完成签到,获得积分10
1秒前
taochuan发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
科研通AI6应助1223采纳,获得10
3秒前
3秒前
郭果儿发布了新的文献求助10
3秒前
张涛发布了新的文献求助10
4秒前
4秒前
深情安青应助硝基采纳,获得10
4秒前
刘海清发布了新的文献求助10
4秒前
4秒前
1234发布了新的文献求助10
5秒前
5秒前
磐xst发布了新的文献求助10
5秒前
xxjsk完成签到,获得积分10
5秒前
不呐呐完成签到,获得积分10
5秒前
年轻的觅风应助兴奋芷采纳,获得10
5秒前
5秒前
6秒前
6秒前
Brenda完成签到,获得积分10
7秒前
务实豁完成签到,获得积分10
7秒前
zhw发布了新的文献求助10
7秒前
7秒前
顺心的凌萱完成签到,获得积分10
7秒前
7秒前
123关闭了123文献求助
7秒前
8秒前
执着幻桃完成签到,获得积分10
8秒前
小二郎应助zihi采纳,获得10
8秒前
充电宝应助刘寅杰采纳,获得10
9秒前
霸王丸发布了新的文献求助30
9秒前
9秒前
玛依热麦图肉孜完成签到,获得积分20
9秒前
zzz完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532050
求助须知:如何正确求助?哪些是违规求助? 4620837
关于积分的说明 14575249
捐赠科研通 4560556
什么是DOI,文献DOI怎么找? 2498923
邀请新用户注册赠送积分活动 1478859
关于科研通互助平台的介绍 1450137