Development of novel PMV-based HVAC control strategies using a mean radiant temperature prediction model by machine learning in Kuwaiti climate

热舒适性 暖通空调 空调 能源消耗 平均辐射温度 控制器(灌溉) 环境科学 人工神经网络 线性回归 计算机科学 模拟 气象学 工作温度 机器学习 工程类 气候变化 地理 电气工程 生态学 生物 机械工程 农学
作者
Jaesung Park,Haneul Choi,Dong-Hyun Kim,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier BV]
卷期号:206: 108357-108357 被引量:23
标识
DOI:10.1016/j.buildenv.2021.108357
摘要

Kuwait is one of the hottest regions globally, where air conditioners (ACs) are indispensable for indoor thermal environment. However, the AC energy consumption has reached excessive levels mainly due to the energy-intensive behavior of occupants who don't frequently control the AC set temperature. This study aims to develop Thermal Comfort-based Controller (TCC) using predicted mean vote (PMV) control and to evaluate thermal environment and energy efficiency when TCC is applied to AC control. TCC is a system that automatically controls rooftop packaged AC which is widely used in Kuwaiti houses. As mean radiant temperature (MRT) is one of the most important value for PMV control in areas such as Kuwait where solar radiation is strong and the outdoor air temperature is very high this study developed, machine learning models to effectively estimate MRT without actual measurement. First, the experimental results, conducted at Real-scale Climatic Environment Chamber, revealed that the actual measured MRT was 1.5 °C higher than the air temperature on average, indicating the possibility of underestimating PMV in Kuwaiti climate. Next, machine learning models (i.e., linear regression, regression tree, and artificial neural network) to estimate MRT automatically were developed and evaluated through computer simulations. The simulation results proved that machine learning models can accurately estimate MRT with only a few data that are easily collected in residential buildings. As a result, when the three estimation models were used, it was closer to the PMV range (−0.2 to +0.2), and the energy consumption was also reduced by more than 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助10
1秒前
2秒前
2秒前
yar应助lixinyue采纳,获得10
3秒前
pluto应助超帅亦寒采纳,获得30
4秒前
迷你的面包完成签到,获得积分10
6秒前
7秒前
7秒前
精灵发布了新的文献求助10
7秒前
梦隐雾完成签到,获得积分10
8秒前
希望天下0贩的0应助yang采纳,获得10
8秒前
李健应助高兴曼寒采纳,获得10
8秒前
弯弯完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
直率月亮完成签到,获得积分10
16秒前
liii发布了新的文献求助10
17秒前
17秒前
17秒前
zjz9928完成签到,获得积分10
17秒前
万能图书馆应助精灵采纳,获得10
17秒前
NINISO完成签到,获得积分10
18秒前
ZDZ发布了新的文献求助10
19秒前
sci发布了新的文献求助50
20秒前
粒粒2发布了新的文献求助30
20秒前
敏感板栗完成签到,获得积分10
21秒前
123发布了新的文献求助10
24秒前
小风铃完成签到,获得积分10
24秒前
sci完成签到,获得积分10
25秒前
ZDZ完成签到,获得积分10
25秒前
上官若男应助qizhang采纳,获得30
26秒前
YamDaamCaa应助七七丫采纳,获得30
28秒前
一行发布了新的文献求助10
29秒前
LIYUAN完成签到,获得积分10
29秒前
keyun发布了新的文献求助10
30秒前
Mr.Su完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432