Selector-less Ferroelectric Tunnel Junctions by Stress Engineering and an Imprinting Effect for High-Density Cross-Point Synapse Arrays

材料科学 铁电性 光电子学 神经形态工程学 非易失性存储器 量子隧道 纳米技术 小型化 电介质 计算机科学 机器学习 人工神经网络
作者
Youngin Goh,Junghyeon Hwang,Minki Kim,Yongsun Lee,Minhyun Jung,Sanghun Jeon
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (49): 59422-59430 被引量:56
标识
DOI:10.1021/acsami.1c14952
摘要

In the quest for highly scalable and three-dimensional (3D) stackable memory components, ferroelectric tunnel junction (FTJ) crossbar architectures are promising technologies for nonvolatile logic and neuromorphic computing. Most FTJs, however, require additional nonlinear devices to suppress sneak-path current, limiting large-scale arrays in practical applications. Moreover, the giant tunneling electroresistance (TER) remains challenging due to their inherent weak polarization. Here, we present that the employment of a diffusion barrier layer as well as a bottom metal electrode having a significantly low thermal expansion coefficient has been identified as an important way to enhance the strain, stabilize the ferroelectricity, and manage the leakage current in ultrathin hafnia film, achieving a high TER of 100, negligible resistance changes even up to 108 cycles, and a high switching speed of a few tens of nanoseconds. Also, we demonstrate that the usage of an imprinting effect in a ferroelectric capacitor induced by an ionized oxygen vacancy near the electrode results in highly asymmetric current-voltage characteristics with a rectifying ratio of 1000. Notably, the proposed FTJ exhibits a high density array size (>4k) with a securing read margin of 10%. These findings provide a guideline for the design of high-performance and selector-free FTJ devices for large-scale crossbar arrays in neuromorphic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
墨林完成签到,获得积分20
3秒前
3秒前
科研通AI2S应助yiguaer采纳,获得10
4秒前
小马甲应助Rickstein采纳,获得10
4秒前
故事的小黄花完成签到,获得积分10
4秒前
上官若男应助jzt12138采纳,获得10
4秒前
5秒前
自觉的帽子完成签到,获得积分10
5秒前
滕祥应助bin采纳,获得100
5秒前
5秒前
6秒前
rui发布了新的文献求助10
6秒前
6秒前
zhb发布了新的文献求助10
7秒前
桐桐应助好名字采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
lulu发布了新的文献求助10
10秒前
10秒前
韩豆乐发布了新的文献求助10
11秒前
南歌子完成签到 ,获得积分10
11秒前
12秒前
13秒前
无花果应助NOVEICE采纳,获得30
13秒前
13秒前
星落枝头发布了新的文献求助10
14秒前
平常心完成签到 ,获得积分10
14秒前
慕青应助Leon Lai采纳,获得10
15秒前
温暖的若之完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
ye发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
领导范儿应助LIUmm采纳,获得10
16秒前
BowieHuang应助liyiliyi117采纳,获得10
16秒前
泡芙完成签到,获得积分20
16秒前
费1发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667