A Combinatorial Deep Learning Structure for Precise Depth of Anesthesia Estimation From EEG Signals

脑电图 脑电双频指数 计算机科学 卷积神经网络 镇静 人工智能 深度学习 均方误差 模式识别(心理学) 麻醉 医学 数学 统计 精神科
作者
Sara Afshar,Reza Boostani,Saeid Sanei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3408-3415 被引量:55
标识
DOI:10.1109/jbhi.2021.3068481
摘要

Electroencephalography (EEG) is commonly used to measure the depth of anesthesia (DOA) because EEG reflects surgical pain and state of the brain. However, precise and real-time estimation of DOA index for painful surgical operations is challenging due to problems such as postoperative complications and accidental awareness. To tackle these problems, we propose a new combinatorial deep learning structure involving convolutional neural networks (inspired by the inception module), bidirectional long short-term memory, and an attention layer. The proposed model uses the EEG signal to continuously predicts the bispectral index (BIS). It is trained over a large dataset, mostly from those under general anesthesia with few cases receiving sedation/analgesia and spinal anesthesia. Despite the imbalance distribution of BIS values in different levels of anesthesia, our proposed structure achieves convincing root mean square error of 5.59 ± 1.04 and mean absolute error of 4.3 ± 0.87, as well as improvement in area under the curve of 15% on average, which surpasses state-of-the-art DOA estimation methods. The DOA values are also discretized into four levels of anesthesia and the results demonstrate strong inter-subject classification accuracy of 88.7% that outperforms the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助oop采纳,获得30
1秒前
1秒前
大模型应助外婆的新世界采纳,获得10
1秒前
超越radiology完成签到,获得积分10
1秒前
曾经的风华完成签到,获得积分10
2秒前
yuqinghui98发布了新的文献求助10
3秒前
3秒前
3秒前
不晚完成签到,获得积分20
5秒前
完美世界应助111采纳,获得10
5秒前
小次之山发布了新的文献求助20
5秒前
7秒前
木子李完成签到,获得积分20
9秒前
彩色曼彤发布了新的文献求助10
12秒前
罗实完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
15秒前
16秒前
16秒前
桐桐应助热心小松鼠采纳,获得10
16秒前
充电宝应助热心小松鼠采纳,获得10
16秒前
所所应助热心小松鼠采纳,获得10
16秒前
Akim应助热心小松鼠采纳,获得10
16秒前
我是老大应助热心小松鼠采纳,获得10
16秒前
领导范儿应助热心小松鼠采纳,获得10
17秒前
岑寄灵完成签到,获得积分20
17秒前
田様应助热心小松鼠采纳,获得10
17秒前
所所应助热心小松鼠采纳,获得10
17秒前
英俊的铭应助热心小松鼠采纳,获得10
17秒前
曼凡发布了新的文献求助10
17秒前
Owen应助一朵采纳,获得10
17秒前
17秒前
18秒前
搜集达人应助呆萌幻竹采纳,获得10
18秒前
星辰大海应助冷酷的树叶采纳,获得10
18秒前
深情安青应助高中生采纳,获得10
18秒前
jason完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421