A deep learning-based system for assessment of serum quality using sample images

溶血 人工智能 深度学习 机器学习 图像质量 计算机科学 医学 内科学 图像(数学)
作者
Chao Yang,Dongling Li,Dehua Sun,Shaofen Zhang,Peng Zhang,Yufeng Xiong,Minghai Zhao,Qi Tao,Bo Situ,Lei Zheng
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:531: 254-260 被引量:18
标识
DOI:10.1016/j.cca.2022.04.010
摘要

Serum quality is an important factor in the pre-analytical phase of laboratory analysis. Visual inspection of serum quality (including recognition of hemolysis, icterus, and lipemia) is widely used in clinical laboratories but is time-consuming, subjective, and prone to errors.Deep learning models were trained using a dataset of 16,427 centrifuged blood images with known serum indices values (including hemolytic index, icteric index, and lipemic index) and their performance was evaluated by five-fold cross-validation. Models were developed for recognizing qualified, unqualified and image-interfered samples, predicting serum indices values, and finally composed into a deep learning-based system for the automatic assessment of serum quality.The area under the receiver operating characteristic curve (AUC) of the developed model for recognizing qualified, unqualified and image-interfered samples was 0.987, 0.983, and 0.999 respectively. As for subclassification of hemolysis, icterus, and lipemia, the AUCs were 0.989, 0.996, and 0.993. For serum indices and total bilirubin predictions, the Pearson's correlation coefficients (PCCs) of the developed model were 0.840, 0.963, 0.854, and 0.953 respectively. Moreover, 30.8% of serum indices tests were deemed unnecessary due to the preliminary application of the deep learning-based system.The deep learning-based system is suitable for the assessment of serum quality and holds the potential to be used as an accurate, efficient, and rarely interfered solution in clinical laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayson关注了科研通微信公众号
1秒前
1秒前
给胸毛做spa完成签到,获得积分10
1秒前
好运爆彭完成签到,获得积分10
1秒前
1秒前
豆子完成签到,获得积分10
1秒前
Genetrix应助了一李采纳,获得20
2秒前
无花果应助伶俐如冰采纳,获得10
2秒前
骑着我的毛豆Y去战斗关注了科研通微信公众号
2秒前
Denmark发布了新的文献求助50
2秒前
路瑶瑶发布了新的文献求助10
2秒前
金角完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助科研大捞采纳,获得10
3秒前
3秒前
3080完成签到,获得积分10
3秒前
3秒前
碧蓝青梦发布了新的文献求助10
4秒前
顾矜应助JoaquinH采纳,获得10
5秒前
默默善愁发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Gjjjjjjj完成签到,获得积分10
7秒前
彭于晏应助斯文初珍采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
打打应助君莫笑采纳,获得10
8秒前
科研通AI6.1应助llll采纳,获得10
9秒前
yy完成签到 ,获得积分10
9秒前
huihui发布了新的文献求助10
9秒前
yu发布了新的文献求助10
9秒前
Lucas应助linllll采纳,获得10
10秒前
星辰完成签到,获得积分10
10秒前
11发布了新的文献求助10
10秒前
852应助我叫杨二虎采纳,获得10
10秒前
10秒前
沐光而行完成签到,获得积分10
11秒前
尤萨完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300