A deep learning-based system for assessment of serum quality using sample images

溶血 人工智能 深度学习 机器学习 图像质量 计算机科学 医学 内科学 图像(数学)
作者
Chao Yang,Dongling Li,Dehua Sun,Shaofen Zhang,Peng Zhang,Yufeng Xiong,Minghai Zhao,Qi Tao,Bo Situ,Lei Zheng
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:531: 254-260 被引量:18
标识
DOI:10.1016/j.cca.2022.04.010
摘要

Serum quality is an important factor in the pre-analytical phase of laboratory analysis. Visual inspection of serum quality (including recognition of hemolysis, icterus, and lipemia) is widely used in clinical laboratories but is time-consuming, subjective, and prone to errors.Deep learning models were trained using a dataset of 16,427 centrifuged blood images with known serum indices values (including hemolytic index, icteric index, and lipemic index) and their performance was evaluated by five-fold cross-validation. Models were developed for recognizing qualified, unqualified and image-interfered samples, predicting serum indices values, and finally composed into a deep learning-based system for the automatic assessment of serum quality.The area under the receiver operating characteristic curve (AUC) of the developed model for recognizing qualified, unqualified and image-interfered samples was 0.987, 0.983, and 0.999 respectively. As for subclassification of hemolysis, icterus, and lipemia, the AUCs were 0.989, 0.996, and 0.993. For serum indices and total bilirubin predictions, the Pearson's correlation coefficients (PCCs) of the developed model were 0.840, 0.963, 0.854, and 0.953 respectively. Moreover, 30.8% of serum indices tests were deemed unnecessary due to the preliminary application of the deep learning-based system.The deep learning-based system is suitable for the assessment of serum quality and holds the potential to be used as an accurate, efficient, and rarely interfered solution in clinical laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
justin完成签到,获得积分10
刚刚
慕青应助Atopos采纳,获得10
1秒前
最红的桶完成签到,获得积分10
1秒前
李健的小迷弟应助小黑采纳,获得10
1秒前
郎琳完成签到,获得积分10
2秒前
清见的心完成签到,获得积分10
2秒前
3秒前
顺利蜻蜓发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
杨杨onng完成签到,获得积分10
4秒前
5秒前
5秒前
星辰大海应助realrrr采纳,获得10
5秒前
ppjkq1发布了新的文献求助10
5秒前
顺利的琳发布了新的文献求助10
6秒前
vokda完成签到 ,获得积分10
6秒前
6秒前
小张完成签到 ,获得积分0
6秒前
7秒前
领导范儿应助知行合一采纳,获得10
7秒前
7秒前
8秒前
9秒前
cui发布了新的文献求助10
9秒前
lavender123发布了新的文献求助30
9秒前
10秒前
11秒前
LJ程励发布了新的文献求助10
11秒前
pups发布了新的文献求助10
12秒前
hcxhch发布了新的文献求助10
12秒前
欣喜战斗机完成签到,获得积分10
13秒前
13秒前
13秒前
kHz发布了新的文献求助10
13秒前
自然含羞草完成签到,获得积分10
14秒前
Hannah完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571658
求助须知:如何正确求助?哪些是违规求助? 4656849
关于积分的说明 14718211
捐赠科研通 4597788
什么是DOI,文献DOI怎么找? 2523329
邀请新用户注册赠送积分活动 1494169
关于科研通互助平台的介绍 1464304