A deep learning-based system for assessment of serum quality using sample images

溶血 人工智能 深度学习 机器学习 图像质量 计算机科学 医学 内科学 图像(数学)
作者
Chao Yang,Dongling Li,Dehua Sun,Shaofen Zhang,Peng Zhang,Yufeng Xiong,Minghai Zhao,Qi Tao,Bo Situ,Lei Zheng
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:531: 254-260 被引量:11
标识
DOI:10.1016/j.cca.2022.04.010
摘要

Serum quality is an important factor in the pre-analytical phase of laboratory analysis. Visual inspection of serum quality (including recognition of hemolysis, icterus, and lipemia) is widely used in clinical laboratories but is time-consuming, subjective, and prone to errors.Deep learning models were trained using a dataset of 16,427 centrifuged blood images with known serum indices values (including hemolytic index, icteric index, and lipemic index) and their performance was evaluated by five-fold cross-validation. Models were developed for recognizing qualified, unqualified and image-interfered samples, predicting serum indices values, and finally composed into a deep learning-based system for the automatic assessment of serum quality.The area under the receiver operating characteristic curve (AUC) of the developed model for recognizing qualified, unqualified and image-interfered samples was 0.987, 0.983, and 0.999 respectively. As for subclassification of hemolysis, icterus, and lipemia, the AUCs were 0.989, 0.996, and 0.993. For serum indices and total bilirubin predictions, the Pearson's correlation coefficients (PCCs) of the developed model were 0.840, 0.963, 0.854, and 0.953 respectively. Moreover, 30.8% of serum indices tests were deemed unnecessary due to the preliminary application of the deep learning-based system.The deep learning-based system is suitable for the assessment of serum quality and holds the potential to be used as an accurate, efficient, and rarely interfered solution in clinical laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的麦片完成签到 ,获得积分10
刚刚
故意的秋烟完成签到,获得积分10
1秒前
开心之王发布了新的文献求助10
2秒前
Dpd发布了新的文献求助10
2秒前
整齐冬瓜发布了新的文献求助10
2秒前
江南发布了新的文献求助20
3秒前
舒服的山槐完成签到,获得积分10
3秒前
1851611453发布了新的文献求助10
4秒前
阿超完成签到 ,获得积分10
6秒前
岸部完成签到,获得积分20
7秒前
领导范儿应助开心之王采纳,获得10
7秒前
7秒前
7秒前
无心的静枫完成签到,获得积分10
8秒前
10秒前
米缸发布了新的文献求助10
11秒前
刻苦的元风完成签到,获得积分10
12秒前
江南完成签到,获得积分10
12秒前
Georgechan发布了新的文献求助10
12秒前
wanci应助Yara.H采纳,获得10
13秒前
淡淡的兔子完成签到 ,获得积分10
15秒前
16秒前
17秒前
anyilin发布了新的文献求助10
17秒前
鲤鱼大神发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
贪玩绿草完成签到 ,获得积分10
19秒前
Han发布了新的文献求助10
19秒前
20秒前
20秒前
像风一样完成签到,获得积分10
21秒前
wanci应助聪慧的微笑采纳,获得10
21秒前
fenmiao发布了新的文献求助10
22秒前
22秒前
高高的巨人完成签到 ,获得积分10
23秒前
24秒前
慕青应助111采纳,获得10
24秒前
24秒前
daladala发布了新的文献求助10
24秒前
林撞树完成签到,获得积分10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226