Reasoning discriminative dictionary-embedded network for fully automatic vertebrae tumor diagnosis

判别式 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 平滑的 计算机视觉 哲学 语言学
作者
Shen Zhao,Bin Chen,Heyou Chang,Bo Chen,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102456-102456 被引量:11
标识
DOI:10.1016/j.media.2022.102456
摘要

Fully automatic vertebrae tumor diagnosis (FAVTD) means using an end-to-end network to directly perform vertebrae recognition and tumor diagnosis from MRI images. FAVTD is clinically crucial for tumor screening and treatment, which helps prevent further metastasis and save the patients' lives. However, FAVTD has not yet been fully attempted due to the challenges raised by tumor appearance variability as well as MRI image field of view (FOV) and/or characteristics diversity. We propose a REasoning DiscriminativE diCtIonary-embeDded nEtwork (RE-DECIDE) to tackle the challenges in FAVTD. RE-DECIDE contains an elaborated enhanced-supervision recognition network (ERN) and a self-adaptive reasoning diagnosis network (SRDN). ERN is implemented in a feed-forward dictionary learning manner, which encodes each vertebra by the sparse codes and uses the sparse projections of the vertebrae coordinates onto multiple observation axes for supervision. ERN thus provides multiple sparse encodings of all vertebrae (and their ground truths) to enhance supervision, which reinforces the discrimination of different vertebrae and thus improves recognition performance. SRDN first highlights the most informative feature in the recognized vertebrae based on an attention mechanism. It then performs feature interaction, i.e., exchanges features of different vertebrae based on the graph reasoning mechanism. A reasoning controlling strategy is designed to prompt feature interaction in vertebrae with the same diagnosis labels and meanwhile reduces that in vertebrae with different labels, which avoids over-smoothing and improves diagnosis performance. RE-DECIDE is trained and evaluated using a challenging dataset consisting of 600 MRI images; the evaluation results show that RE-DECIDE achieves high performance in both recognition (accuracy: 0.940) and diagnosis (AUC: 0.947) tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助30
1秒前
HuiJN发布了新的文献求助10
3秒前
顺利的历发布了新的文献求助10
4秒前
纯真皮卡丘完成签到 ,获得积分10
5秒前
薛枏完成签到,获得积分10
6秒前
7秒前
bensonyang1013完成签到 ,获得积分10
8秒前
9秒前
9秒前
11秒前
问问发布了新的文献求助10
12秒前
儒雅南风完成签到 ,获得积分10
12秒前
liuxinxin发布了新的文献求助10
13秒前
Erin完成签到,获得积分10
13秒前
moral发布了新的文献求助10
16秒前
16秒前
123456完成签到 ,获得积分20
17秒前
科研通AI5应助笨笨松采纳,获得10
18秒前
kajikaji完成签到,获得积分10
19秒前
干饭大王应助顺利的历采纳,获得10
20秒前
bravo完成签到,获得积分20
21秒前
23秒前
23秒前
千暮完成签到,获得积分10
25秒前
学术噗噗完成签到,获得积分10
26秒前
付绒发布了新的文献求助10
27秒前
28秒前
28秒前
zha发布了新的文献求助10
29秒前
29秒前
所所应助shinn采纳,获得10
30秒前
ZJP421完成签到,获得积分20
30秒前
Qiao应助zhengqisong采纳,获得20
31秒前
32秒前
Felix发布了新的文献求助10
33秒前
33秒前
Aulalala完成签到,获得积分10
35秒前
36秒前
笨笨松发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494