Reasoning discriminative dictionary-embedded network for fully automatic vertebrae tumor diagnosis

判别式 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 平滑的 计算机视觉 哲学 语言学
作者
Shen Zhao,Bin Chen,Heyou Chang,Bo Chen,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102456-102456 被引量:11
标识
DOI:10.1016/j.media.2022.102456
摘要

Fully automatic vertebrae tumor diagnosis (FAVTD) means using an end-to-end network to directly perform vertebrae recognition and tumor diagnosis from MRI images. FAVTD is clinically crucial for tumor screening and treatment, which helps prevent further metastasis and save the patients' lives. However, FAVTD has not yet been fully attempted due to the challenges raised by tumor appearance variability as well as MRI image field of view (FOV) and/or characteristics diversity. We propose a REasoning DiscriminativE diCtIonary-embeDded nEtwork (RE-DECIDE) to tackle the challenges in FAVTD. RE-DECIDE contains an elaborated enhanced-supervision recognition network (ERN) and a self-adaptive reasoning diagnosis network (SRDN). ERN is implemented in a feed-forward dictionary learning manner, which encodes each vertebra by the sparse codes and uses the sparse projections of the vertebrae coordinates onto multiple observation axes for supervision. ERN thus provides multiple sparse encodings of all vertebrae (and their ground truths) to enhance supervision, which reinforces the discrimination of different vertebrae and thus improves recognition performance. SRDN first highlights the most informative feature in the recognized vertebrae based on an attention mechanism. It then performs feature interaction, i.e., exchanges features of different vertebrae based on the graph reasoning mechanism. A reasoning controlling strategy is designed to prompt feature interaction in vertebrae with the same diagnosis labels and meanwhile reduces that in vertebrae with different labels, which avoids over-smoothing and improves diagnosis performance. RE-DECIDE is trained and evaluated using a challenging dataset consisting of 600 MRI images; the evaluation results show that RE-DECIDE achieves high performance in both recognition (accuracy: 0.940) and diagnosis (AUC: 0.947) tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luwenxuan发布了新的文献求助10
刚刚
刚刚
格拉希尔发布了新的文献求助20
1秒前
3秒前
GuMingyang完成签到,获得积分10
3秒前
小蘑菇应助优美的薯片采纳,获得10
3秒前
3秒前
4秒前
cell发布了新的文献求助10
5秒前
miles完成签到,获得积分10
5秒前
研友_Z63Wg8应助白尔德芙采纳,获得20
6秒前
梁小米发布了新的文献求助20
6秒前
9秒前
11秒前
上官若男应助迷人灵采纳,获得20
11秒前
12秒前
12秒前
小蘑菇应助前进的小宅熊采纳,获得10
13秒前
肖圣凯发布了新的文献求助10
13秒前
冰小墨发布了新的文献求助10
14秒前
研友_LOoomL发布了新的文献求助10
15秒前
weiwei发布了新的文献求助10
15秒前
橘子的海完成签到 ,获得积分10
15秒前
穆紫应助香菜芝麻精采纳,获得10
15秒前
坚定的一休完成签到,获得积分10
15秒前
梁小米完成签到,获得积分10
18秒前
明亮小凡发布了新的文献求助10
18秒前
脑洞疼应助有问题采纳,获得10
18秒前
19秒前
hsiao_yang完成签到 ,获得积分10
20秒前
大个应助肖圣凯采纳,获得10
21秒前
大模型应助橙子采纳,获得10
21秒前
英姑应助ccct采纳,获得10
21秒前
yule完成签到 ,获得积分10
21秒前
21秒前
23秒前
24秒前
科研八戒完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352