Hybridized heterostructure of CoS and MoS2 nanoparticles for highly-efficient and robust bifunctional water electrolysis

双功能 异质结 化学工程 化学 电解质 电解 催化作用 电解水 纳米颗粒 光电子学 材料科学 纳米技术 电极 物理化学 有机化学 工程类
作者
Abu Talha Aqueel Ahmed,Chi H. Lee,Abu Saad Ansari,S.M. Pawar,Jonghoon Han,Sunjung Park,Giho Shin,Seungun Yeon,Sangeun Cho,Jaehun Seol,Sang Uck Lee,Hyungsang Kim,Hyunsik Im
出处
期刊:Applied Surface Science [Elsevier]
卷期号:592: 153196-153196 被引量:40
标识
DOI:10.1016/j.apsusc.2022.153196
摘要

• CoS/MoS 2 heterostructure nanoparticles are fabricated using a single–step hydrothermal process. • Excellent bifunctional activities along with long-term sustainability in 1 M KOH electrolyte. • Low OER (229 mV) and HER (74 mV) overpotentials at 10 mA cm ─2 with small Tafel slopes are achieved. • DFT calculations reveal that one–way electron transfer activates both oxidative/reductive reactions. For industrial hydrogen production, it is beneficial to develop highly-efficient, earth-abundant, and bifunctional electrocatalysts which exhibit compatibility between oxygen evolution reaction (OER) or hydrogen evolution reaction (HER) activity and stability in the same electrolyte. Herein, we report a bifunctional hybrid CoS/MoS 2 nanoparticle electrocatalyst in 1 M KOH, fulfilling desirable industrial criteria for water electrolysis. The CoS/MoS 2 catalyst exhibits excellent OER and HER activities with very low overpotentials as well as outstanding stability for more than 100 h, even at a high current density of 250 mA cm −2 . The bifunctional CoS/MoS 2 catalyst-based water-electrolyzer exhibits a low cell voltage of 1.52 V at 10 mA cm −2 (1.714 V at 100 mA cm −2 ) with long–term stability. Density functional theory calculations reveal that the hybrid CoS/MoS 2 electrocatalyst shows one–way electron transfer that can activate both oxidative/reductive reactions. Therefore, it exhibits superior OER and HER activities, outperforming the state-of-the-art noble-metal-free catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Li关注了科研通微信公众号
1秒前
Wvzzzzz发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
7秒前
硝苯地平发布了新的文献求助10
7秒前
xyc完成签到 ,获得积分10
8秒前
Tina驳回了赘婿应助
8秒前
9秒前
马丽发布了新的文献求助10
9秒前
whj发布了新的文献求助10
9秒前
小马甲应助诗蕊采纳,获得10
9秒前
呆萌语梦完成签到,获得积分20
10秒前
10秒前
11秒前
哈哈完成签到 ,获得积分10
11秒前
诚心千山完成签到,获得积分10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
弦断陌殇应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
zho应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助polystyrene采纳,获得10
13秒前
13秒前
大模型应助郭琳采纳,获得30
13秒前
a达完成签到,获得积分20
14秒前
jiangchang发布了新的文献求助10
14秒前
14秒前
852应助李蕤蕤采纳,获得10
14秒前
JamesPei应助自由钢铁侠采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610985
求助须知:如何正确求助?哪些是违规求助? 4695395
关于积分的说明 14886920
捐赠科研通 4724004
什么是DOI,文献DOI怎么找? 2545430
邀请新用户注册赠送积分活动 1510161
关于科研通互助平台的介绍 1473126