Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values

喀斯特 土壤水分 环境科学 表土 土壤科学 土壤pH值 环境化学 水文学(农业) 地质学 化学 古生物学 有机化学 岩土工程
作者
Cheng Li,Chaosheng Zhang,Tao Yu,Xu Liu,Yeyu Yang,Qingye Hou,Zhongfang Yang,Xudong Ma,Lei Wang
出处
期刊:Environmental Pollution [Elsevier]
卷期号:304: 119234-119234 被引量:7
标识
DOI:10.1016/j.envpol.2022.119234
摘要

In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助SuperJG采纳,获得10
1秒前
1秒前
2秒前
Hello应助Darius采纳,获得10
2秒前
chenzilin发布了新的文献求助10
2秒前
简晴发布了新的文献求助10
3秒前
pluto应助wenggi采纳,获得10
5秒前
6秒前
jin完成签到,获得积分10
7秒前
7秒前
爆米花应助chengymao采纳,获得10
7秒前
harri完成签到,获得积分10
9秒前
田様应助123采纳,获得10
12秒前
祝志泽发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
Bismarck发布了新的文献求助10
15秒前
Fn发布了新的文献求助50
15秒前
17秒前
雨寒完成签到,获得积分10
17秒前
是你的雨完成签到,获得积分10
17秒前
wang完成签到,获得积分10
18秒前
Max发布了新的文献求助30
18秒前
19秒前
2鱼发布了新的文献求助10
20秒前
w6c6y6发布了新的文献求助30
20秒前
彭于彦祖应助雨寒采纳,获得50
21秒前
伈X完成签到,获得积分10
21秒前
SuperJG发布了新的文献求助10
21秒前
共享精神应助ZN采纳,获得10
21秒前
21秒前
22秒前
tiny_face发布了新的文献求助10
23秒前
含蓄访天完成签到,获得积分10
24秒前
科研通AI2S应助Hosea采纳,获得10
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742