Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values

喀斯特 土壤水分 环境科学 表土 土壤科学 土壤pH值 环境化学 水文学(农业) 地质学 化学 古生物学 岩土工程 有机化学
作者
Cheng Li,Chaosheng Zhang,Tao Yu,Xu Liu,Yeyu Yang,Qingye Hou,Zhongfang Yang,Xudong Ma,Lei Wang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:304: 119234-119234 被引量:56
标识
DOI:10.1016/j.envpol.2022.119234
摘要

In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
欢喜嘉懿完成签到,获得积分20
2秒前
中和皇极完成签到,获得积分0
2秒前
ddd发布了新的文献求助10
3秒前
爆米花应助肖雪依采纳,获得10
3秒前
余南发布了新的文献求助10
4秒前
木木发布了新的文献求助50
5秒前
Ava应助达克赛德采纳,获得10
7秒前
兴奋的小虾米完成签到,获得积分10
7秒前
7秒前
爆米花应助Alioth采纳,获得10
8秒前
兮兮完成签到,获得积分10
8秒前
ljx完成签到 ,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助sakura采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
不吃香菜发布了新的文献求助100
12秒前
小药童完成签到 ,获得积分10
13秒前
山丘完成签到,获得积分10
13秒前
14秒前
14秒前
skywalker发布了新的文献求助10
15秒前
骑个柯基完成签到,获得积分10
16秒前
yyfdqms完成签到,获得积分10
17秒前
meat12应助hhh采纳,获得10
18秒前
18秒前
19秒前
20秒前
fujiaxing完成签到,获得积分10
22秒前
田一完成签到,获得积分10
22秒前
22秒前
24秒前
时召展发布了新的文献求助10
25秒前
不吃香菜完成签到,获得积分10
25秒前
桐桐应助mary采纳,获得10
27秒前
上官若男应助gggggd采纳,获得10
28秒前
覃雅丽发布了新的文献求助10
28秒前
dongdadada完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019