Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI)

人工神经网络 人工智能 计算机科学 异构化 二肽 变量(数学) 化学 数学 数学分析 生物化学 催化作用
作者
Takuma Kikutsuji,Yusuke Mori,Kei-ichi Okazaki,Toshifumi Mori,Kang Kim,Nobuyuki Matubayasi
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (15): 154108-154108 被引量:23
标识
DOI:10.1063/5.0087310
摘要

A method for obtaining appropriate reaction coordinates is required to identify transition states distinguishing the product and reactant in complex molecular systems. Recently, abundant research has been devoted to obtaining reaction coordinates using artificial neural networks from deep learning literature, where many collective variables are typically utilized in the input layer. However, it is difficult to explain the details of which collective variables contribute to the predicted reaction coordinates owing to the complexity of the nonlinear functions in deep neural networks. To overcome this limitation, we used Explainable Artificial Intelligence (XAI) methods of the Local Interpretable Model-agnostic Explanation (LIME) and the game theory-based framework known as Shapley Additive exPlanations (SHAP). We demonstrated that XAI enables us to obtain the degree of contribution of each collective variable to reaction coordinates that is determined by nonlinear regressions with deep learning for the committor of the alanine dipeptide isomerization in vacuum. In particular, both LIME and SHAP provide important features to the predicted reaction coordinates, which are characterized by appropriate dihedral angles consistent with those previously reported from the committor test analysis. The present study offers an AI-aided framework to explain the appropriate reaction coordinates, which acquires considerable significance when the number of degrees of freedom increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助十七画采纳,获得10
1秒前
1秒前
zhlh完成签到,获得积分10
1秒前
pengjiejie完成签到,获得积分10
3秒前
3秒前
4秒前
千夜发布了新的文献求助30
4秒前
5秒前
wp4455777发布了新的文献求助10
5秒前
bvhj发布了新的文献求助10
5秒前
666完成签到,获得积分10
6秒前
6秒前
honghong完成签到 ,获得积分20
6秒前
调研昵称发布了新的文献求助10
7秒前
细心雨兰发布了新的文献求助10
7秒前
bvhj完成签到,获得积分10
9秒前
Lili发布了新的文献求助10
10秒前
太阳完成签到,获得积分10
11秒前
开朗发卡完成签到,获得积分10
11秒前
潇洒毛应助dolphin采纳,获得10
12秒前
xink完成签到,获得积分10
13秒前
狗大王完成签到,获得积分10
13秒前
美君完成签到 ,获得积分10
13秒前
啦啦啦完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
lrc完成签到,获得积分10
17秒前
maxSpr完成签到,获得积分10
19秒前
卡拉米完成签到,获得积分10
20秒前
慈祥的帽子完成签到,获得积分10
20秒前
郑小七完成签到,获得积分10
20秒前
Miller应助BLDYT采纳,获得20
20秒前
charles发布了新的文献求助10
21秒前
21秒前
Ava应助Lili采纳,获得10
22秒前
22秒前
22秒前
22秒前
开心应助Alvin采纳,获得10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655