亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topology optimization of an airfoil fin microchannel heat exchanger using artificial intelligence

拓扑优化 热交换器 材料科学 翼型 微通道 板翅式换热器 机械工程 拓扑(电路) 工程类 计算机科学 结构工程 板式换热器 有限元法 电气工程 纳米技术
作者
Donna Post Guillen,Alexander W. Abboud,James Bennink
出处
期刊:Nuclear Engineering and Design [Elsevier]
卷期号:391: 111737-111737 被引量:9
标识
DOI:10.1016/j.nucengdes.2022.111737
摘要

• Airfoil fin PCHE constructed of Alloy 617 with helium as the working fluid. • Design is optimized using a design of experiments with artificial intelligence. • Latin hypercube sampling conducted to identify sample points. • Optimal designs maximize heat transfer and minimize pressure drop. • Inlet angle, fin scale, staggering, transverse and longitudinal pitch varied. High-performance microchannel heat exchangers are needed to supply heat for power conversion for nuclear microreactors. An airfoil fin microchannel design, constructed of Alloy 617 with helium as the working fluid, is analyzed and optimized using a design of experiments with artificial intelligence techniques. The use of airfoil fins offers the potential to reduce pressure drop across the heat exchanger, as compared to other types of channel configurations. A framework for topology optimization of airfoil fin printed circuit heat exchangers (PCHEs) has been developed that can be readily extended to different fin sizes and shapes, as well as different inlet and operating conditions, materials of construction, and working fluids. An optimization procedure is developed that employs computational fluid dynamics for a set of design points identified using Latin hypercube sampling. Computational fluid dynamics is used to analyze a simplified two-channel configuration where five design parameters are varied – inlet angle, fin scale, extent of staggering, transverse and longitudinal pitches. Two methods (a 5D polynomial and a regression neural network) are compared for generating surrogate models and the resulting response surface approximation is input to a genetic algorithm that is used to identify a set of optimal parameters. The optimal geometries are found across six channel Reynolds numbers ranging from 1000 to 5000, since inlet conditions affect flow through the heat exchanger. A set of optimal designs that maximizes heat transfer and minimizes pressure drop is identified, and a thermal stress analysis is performed on the optimal design. Correlations for the Nusselt number and Darcy friction factor are developed that can be useful for thermal hydraulic analyses using system codes. Thermal stresses are analyzed and a brief discussion of the status of code cases of PCHEs for nuclear applications is given. Testing and thermomechanical modeling is needed to facilitate future code compliance of PCHEs for high pressure and high temperature applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoxi完成签到 ,获得积分10
6秒前
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
Willow完成签到,获得积分10
32秒前
Hello应助能不能不看论文采纳,获得10
36秒前
Binbin完成签到,获得积分10
40秒前
44秒前
1分钟前
1分钟前
zznzn发布了新的文献求助10
1分钟前
小蘑菇应助kzf丶bryant采纳,获得10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
计划完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
himes发布了新的文献求助10
1分钟前
JamesPei应助甜青提采纳,获得10
1分钟前
Owen应助LukeLion采纳,获得10
1分钟前
himes完成签到,获得积分10
1分钟前
1分钟前
李健应助麦麦采纳,获得10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
2分钟前
甜青提发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
麦麦发布了新的文献求助10
2分钟前
2分钟前
沫雨应助zznzn采纳,获得10
2分钟前
一只鲨呱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
在水一方应助wang采纳,获得10
3分钟前
轻松听双发布了新的文献求助10
3分钟前
3分钟前
从容芮完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助100
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911770
关于积分的说明 15134204
捐赠科研通 4829956
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540222
关于科研通互助平台的介绍 1498407