中国
环境科学
全球变暖
温室气体
提高采收率
发射强度
碳中和
自然资源经济学
碳足迹
化石燃料
气候变化
环境经济学
工程类
废物管理
经济
电气工程
生物
激发
法学
生态学
政治学
作者
Hu Guo,Xiuqin Lyu,En Meng,Yang Xu,Menghao Zhang,Hongtao Fu,Yuxuan Zhang,Kaoping Song
摘要
Abstract CO2 emission was the major cause that accounted for the global warming and climate chance. How to reduce CO2 footprint to stop or slow down the global warming has been hot topic. As a developing country, China has become the largest CO2 emission nation in the world during the industrialization process to develop economy, although the CO2 emission intensity has been reduced significantly compared to previous stage. China has promised and succeeded to keep the promise reduce carbon intensity to meet the requirement of Paris Agreement. To meet the promise to attain carbon peak emission in 2030 and carbon neutrality in 2060 (CPCN), carbon capture, utilization and storage (CCUS) is an important and necessary step. Considering the high cost, high energy intensity and complex technology integrated optimization add uncertainties of CCS, utilization of captured CO2 can be of vital importance. One of the most attractive CCUS in China is CO2 enhanced oil recovery with captured CO2 (CCS EOR). CO2 EOR with captured CO2 may be one the best CCUS ways for China for the following three reasons. First, it can meet the increasing oil demand while reducing the carbon intensive coal. Second, around 66 CO2 EOR field tests have been conducted in China and experiences have ben gained. Finally, CO2 EOR in the USA was a proven technology which can increase oil production significantly and stably. Latest CCUS technology progress in China was reviewed. As of July 2021, 49 projects were carried out or under construction. Net CO2 avoided costs from 39 projects varied from 120 to 730 CNY/ ton CO2 (18.5-112.3 USD/ ton CO2). Although CCUS technology development in China was significant, the gap between global leading levels are obvious. Current challenges of CCS EOR include high CO2 capture cost, small scale, low incremental oil recovery, long-time huge capital input. The costs can be significantly reduced when the scale was enlarged to a commercial scale and transportation costs were further reduced by either pipelines or trains. CO2 transportation with well-distributed high-speed rail in China may be a feasible choice in future. If the CO2 EOR in China develops with the same speed as the USA, CO2 used for EOR in 2050 can be as high as 87.27 million tons. CO2 used for CO2 EOR in 2050 can account for 17% to 44% of the CO2 emission. CCS EOR in China will provid both domestic and international companies with good opportunities.
科研通智能强力驱动
Strongly Powered by AbleSci AI