Control of ice crystal nucleation and growth during the food freezing process

冰晶 海冰生长过程 成核 冰核 冰点 晶体生长 抗冻蛋白 化学物理 传质 凝结 化学 热力学 材料科学 化学工程 海冰 结晶学 海冰厚度 气象学 色谱法 冰层 物理 有机化学 工程类 生物化学
作者
Guoliang Jia,Yimeng Chen,Aidong Sun,Vibeke Orlien
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:21 (3): 2433-2454 被引量:54
标识
DOI:10.1111/1541-4337.12950
摘要

Abstract Freezing can maintain a low‐temperature environment inside food, reducing water activity and preventing microorganism growth. However, when ice crystals are large, present in high amounts, and/or irregularly distributed, irreversible damage to food can occur. Therefore, ice growth is a vital parameter that needs to be controlled during frozen food processing and storage. In this review, ice growth theory and control are described. Macroscopic heat and mass transfer processes, the relationship between the growth of ice crystals and macroscopic heat transfer factors, and nucleation theory are reviewed based on the reported theoretical and experimental approaches. The issues addressed include how heat transfer occurs inside samples, variations in thermal properties with temperature, boundary conditions, and the functional relationship between ice crystal growth and freezing parameters. Quick freezing (e.g., cryogenic freezing) and unavoidable temperature fluctuations (e.g., multiple freeze–thaw cycles) are both taken into consideration. The approaches for controlling ice crystal growth based on the ice morphology and content are discussed. The characteristics and initial mechanisms of ice growth inhibitors (e.g., antifreeze proteins (AFPs), polysaccharides, and phenols) and ice nucleation agents (INAs) are complex, especially when considering their molecular structures, the ice‐binding interface, and the dose. Although the market share for nonthermal processing technology is low, there will be more work on freezing technologies and their theoretical basis. Superchilling technology (partial freezing) is also mentioned here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao12wang完成签到,获得积分10
刚刚
刚刚
bdvdsrwteges发布了新的文献求助10
1秒前
如约而至发布了新的文献求助20
1秒前
纯真的莫茗完成签到,获得积分10
1秒前
彭于晏应助超11采纳,获得10
2秒前
2秒前
gavincsu发布了新的文献求助10
2秒前
KSGGS给KSGGS的求助进行了留言
2秒前
flow驳回了Aria应助
2秒前
lixiunan完成签到,获得积分10
2秒前
2秒前
dildil发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
边瑞明完成签到,获得积分10
5秒前
Wang发布了新的文献求助10
6秒前
Jenny应助拼搏思卉采纳,获得10
6秒前
6秒前
神勇的雅香应助不喝可乐采纳,获得10
6秒前
清脆的白开水完成签到,获得积分10
6秒前
Hello应助善良过客采纳,获得10
6秒前
现实的曼荷完成签到,获得积分10
6秒前
6秒前
7秒前
zyyyy完成签到,获得积分10
7秒前
dd完成签到,获得积分20
7秒前
7秒前
混子发布了新的文献求助10
7秒前
HYG完成签到,获得积分10
8秒前
二橦完成签到 ,获得积分10
8秒前
熊博士完成签到,获得积分10
9秒前
哲000发布了新的文献求助10
9秒前
丰富的世界完成签到 ,获得积分10
9秒前
10秒前
10秒前
路漫漫其修远兮完成签到,获得积分10
10秒前
GGZ发布了新的文献求助10
10秒前
啦啦啦发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759