药理学
药品
药物发现
药物代谢
不利影响
医学
生物
生物信息学
作者
Anup P. Challa,Xin Hu,Yaqin Zhang,Jeffrey Hymes,Bret D. Wallace,Karavadhi Surendra,Hongmao Sun,Samarjit Patnaik,Matthew D. Hall,Min Shen
标识
DOI:10.1021/acs.jcim.1c01414
摘要
Despite the potency of most first-line anti-cancer drugs, nonadherence to these drug regimens remains high and is attributable to the prevalence of “off-target” drug effects that result in serious adverse events (SAEs) like hair loss, nausea, vomiting, and diarrhea. Some anti-cancer drugs are converted by liver uridine 5′-diphospho-glucuronosyltransferases through homeostatic host metabolism to form drug-glucuronide conjugates. These sugar-conjugated metabolites are generally inactive and can be safely excreted via the biliary system into the gastrointestinal tract. However, β-glucuronidase (βGUS) enzymes expressed by commensal gut bacteria can remove the glucuronic acid moiety, producing the reactivated drug and triggering dose-limiting side effects. Small-molecule βGUS inhibitors may reduce this drug-induced gut toxicity, allowing patients to complete their full course of treatment. Herein, we report the discovery of novel chemical series of βGUS inhibitors by structure-based virtual high-throughput screening (vHTS). We developed homology models for βGUS and applied them to large-scale vHTS against nearly 400,000 compounds within the chemical libraries of the National Center for Advancing Translational Sciences at the National Institutes of Health. From the vHTS results, we cherry-picked 291 compounds via a multifactor prioritization procedure, providing 69 diverse compounds that exhibited positive inhibitory activity in a follow-up βGUS biochemical assay in vitro. Our findings correspond to a hit rate of 24% and could inform the successful downstream development of a therapeutic adjunct that targets the human microbiome to prevent SAEs associated with first-line, standard-of-care anti-cancer drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI