MsDroid: Identifying Malicious Snippets for Android Malware Detection

计算机科学 恶意软件 人工智能 分类器(UML) 机器学习 Android恶意软件 情报检索 自然语言处理 计算机安全
作者
Yiling He,Yiping Liu,Lei Wu,Ziqi Yang,Kui Ren,Zhan Qin
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2025-2039 被引量:13
标识
DOI:10.1109/tdsc.2022.3168285
摘要

Machine learning has shown promise for improving the accuracy of Android malware detection in the literature. However, it is challenging to (1) stay robust towards real-world scenarios and (2) provide interpretable explanations for experts to analyse. In this article, we propose MsDroid , an An droid malware detection system that makes decisions by identifying m alicious s nippets with interpretable explanations. We mimic a common practice of security analysts, i.e., filtering APIs before looking through each method, to focus on local snippets around sensitive APIs instead of the whole program. Each snippet is represented with a graph encoding both code attributes and domain knowledge and then classified by Graph Neural Network (GNN). The local perspective helps the GNN classifier to concentrate on code highly correlated with malicious behaviors, and the information contained in graphs benefit in better understanding of the behaviors. Hence, MsDroid is more robust and interpretable in nature. To identify malicious snippets, we present a semi-supervised learning approach that only requires app labeling. The key insight is that malicious snippets only exist in malwares and appear at least once in a malware. To make malicious snippets less opaque, we design an explanation mechanism to show the importance of control flows and to retrieve similarly implemented snippets from known malwares. A comprehensive comparison with 5 baseline methods is conducted on a dataset of more than 81K apps in 3 real-world scenarios, including zero-day , evolution , and obfuscation . The experimental results show that MsDroid is more robust than state-of-the-art systems in all cases, with 5.37% to 49.52% advantage in F1-score. Besides, we demonstrate that the provided explanations are effective and illustrate how the explanations facilitate malware analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
追风少年应助科研通管家采纳,获得10
刚刚
不配.应助科研通管家采纳,获得20
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
暮霭沉沉应助科研通管家采纳,获得10
刚刚
邓佳鑫Alan应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
苏卿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
苏卿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
我是老大应助WHY采纳,获得10
2秒前
2秒前
菜大鸭发布了新的文献求助10
3秒前
4秒前
菠萝吹雪完成签到,获得积分10
4秒前
机智的胖达完成签到,获得积分10
4秒前
5秒前
paprika发布了新的文献求助10
6秒前
老李完成签到,获得积分10
7秒前
张豪杰发布了新的文献求助10
7秒前
8秒前
清醒发布了新的文献求助10
8秒前
Jeremy发布了新的文献求助10
9秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175