MsDroid: Identifying Malicious Snippets for Android Malware Detection

计算机科学 恶意软件 人工智能 分类器(UML) 机器学习 Android恶意软件 情报检索 自然语言处理 计算机安全
作者
Yiling He,Yiping Liu,Lei Wu,Ziqi Yang,Kui Ren,Zhan Qin
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2025-2039 被引量:13
标识
DOI:10.1109/tdsc.2022.3168285
摘要

Machine learning has shown promise for improving the accuracy of Android malware detection in the literature. However, it is challenging to (1) stay robust towards real-world scenarios and (2) provide interpretable explanations for experts to analyse. In this article, we propose MsDroid , an An droid malware detection system that makes decisions by identifying m alicious s nippets with interpretable explanations. We mimic a common practice of security analysts, i.e., filtering APIs before looking through each method, to focus on local snippets around sensitive APIs instead of the whole program. Each snippet is represented with a graph encoding both code attributes and domain knowledge and then classified by Graph Neural Network (GNN). The local perspective helps the GNN classifier to concentrate on code highly correlated with malicious behaviors, and the information contained in graphs benefit in better understanding of the behaviors. Hence, MsDroid is more robust and interpretable in nature. To identify malicious snippets, we present a semi-supervised learning approach that only requires app labeling. The key insight is that malicious snippets only exist in malwares and appear at least once in a malware. To make malicious snippets less opaque, we design an explanation mechanism to show the importance of control flows and to retrieve similarly implemented snippets from known malwares. A comprehensive comparison with 5 baseline methods is conducted on a dataset of more than 81K apps in 3 real-world scenarios, including zero-day , evolution , and obfuscation . The experimental results show that MsDroid is more robust than state-of-the-art systems in all cases, with 5.37% to 49.52% advantage in F1-score. Besides, we demonstrate that the provided explanations are effective and illustrate how the explanations facilitate malware analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎土土发布了新的文献求助50
1秒前
1秒前
大抽是谁发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助公茂源采纳,获得30
2秒前
失眠的凝雁完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
Menand完成签到,获得积分10
3秒前
学者发布了新的文献求助10
3秒前
清新完成签到,获得积分10
3秒前
陶弈衡完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
愉快盼曼发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
nemo发布了新的文献求助10
9秒前
学术蝗虫完成签到,获得积分10
9秒前
justin完成签到,获得积分10
10秒前
西瓜啵啵完成签到,获得积分10
12秒前
小周完成签到,获得积分10
12秒前
Louki完成签到 ,获得积分10
12秒前
温暖的颜演完成签到 ,获得积分10
13秒前
yudandan@CJLU发布了新的文献求助10
14秒前
科研小民工应助_呱_采纳,获得50
14秒前
愉快盼曼完成签到,获得积分20
14秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
13679165979发布了新的文献求助10
16秒前
温暖的钻石完成签到,获得积分10
16秒前
科研通AI5应助赖道之采纳,获得10
16秒前
17秒前
苏卿应助Eric采纳,获得10
17秒前
思源应助hhzz采纳,获得10
18秒前
红红完成签到,获得积分10
21秒前
瑶一瑶发布了新的文献求助10
21秒前
NexusExplorer应助刘鹏宇采纳,获得10
21秒前
roselau完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808