Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation

估计 机制(生物学) 人工神经网络 比例(比率) 计算机科学 人工智能 机器学习 工程类 系统工程 地理 地图学 认识论 哲学
作者
Ahmet Kara
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:169: 108211-108211 被引量:27
标识
DOI:10.1016/j.cie.2022.108211
摘要

• An attention-based deep learning framework is developed for machinery prognostics. • PSO algorithm is employed to optimize the hyperparameters of the proposed network. • The multi-head self-attention mechanism is applied to increase prognostic accuracy. • Experiments on the C-MAPSS data validate the effectiveness of the proposed method. Prognostics and Health Management (PHM) is the core task in modern industries to provide the reliability and availability of mechanical systems. In recent years, the degradation behaviors have been extensively employed to estimate the remaining useful life in PMH technologies. In this research, a novel data-driven framework based on the multi-scale network structure, called MCA-BGRU, is proposed to provide the remaining useful life prediction, which combines multi-scale convolution neural network (CNN), bidirectional gated recurrent unit (BGRU), multi-head self-attention (MHSA) mechanism, and fully-connected layers. In this proposed structure, multi-scale CNN blocks and the MHSA mechanism are constructed to capture high-level representations from the multivariate input data automatically. Then, a BGRU layer is leveraged to learn various temporal tendencies between extracted features. Additionally, particle swarm optimization is adopted to simultaneously tune the hyperparameters of this framework. The superiority of the MCA-BGRU is validated by the well-known C-MAPSS dataset of NASA. The experimental results revealed that the presented approach achieves an improvement of 0.32% and 5.6% in terms of RMSE and Score values compared with the various existing studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看看发布了新的文献求助20
1秒前
1秒前
wpt完成签到,获得积分20
1秒前
白开水完成签到,获得积分10
1秒前
忐忑的蓝完成签到,获得积分10
2秒前
ZJX完成签到,获得积分10
2秒前
2秒前
3秒前
123完成签到,获得积分10
3秒前
小冬猫发布了新的文献求助10
3秒前
huiwanfeifei发布了新的文献求助10
3秒前
千跃完成签到,获得积分10
3秒前
五花膘完成签到 ,获得积分10
3秒前
JamesPei应助阿毛ya采纳,获得10
4秒前
羊羊羊发布了新的文献求助20
4秒前
小蘑菇应助天博采纳,获得10
4秒前
李青秀发布了新的文献求助20
5秒前
5秒前
6秒前
nong12123完成签到,获得积分10
6秒前
共享精神应助hhh采纳,获得10
6秒前
7秒前
poorzz完成签到,获得积分10
7秒前
简择两发布了新的文献求助10
8秒前
DiviO_发布了新的文献求助10
8秒前
8秒前
9秒前
天天快乐应助诚心谷南采纳,获得10
9秒前
NexusExplorer应助lightman采纳,获得10
9秒前
Orange应助zzw采纳,获得20
10秒前
快乐科研完成签到,获得积分20
10秒前
10秒前
苗苗94酷完成签到,获得积分10
10秒前
echo完成签到,获得积分10
11秒前
右路的地方完成签到,获得积分10
11秒前
科研通AI2S应助plant采纳,获得10
12秒前
汪汪完成签到,获得积分10
12秒前
小蘑菇应助健壮雪糕采纳,获得10
12秒前
落叶完成签到,获得积分10
12秒前
雷行云发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110