An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification

计算机科学 卷积神经网络 睡眠阶段 人工智能 图形 模式识别(心理学) 脑电图 邻接矩阵 睡眠(系统调用) 医学诊断 多导睡眠图 理论计算机科学 医学 病理 心理学 精神科 操作系统
作者
Menglei Li,Hongbo Chen,Zixue Cheng
出处
期刊:Life [MDPI AG]
卷期号:12 (5): 622-622 被引量:15
标识
DOI:10.3390/life12050622
摘要

Sleep staging has been widely used as an approach in sleep diagnoses at sleep clinics. Graph neural network (GNN)-based methods have been extensively applied for automatic sleep stage classifications with significant results. However, the existing GNN-based methods rely on a static adjacency matrix to capture the features of the different electroencephalogram (EEG) channels, which cannot grasp the information of each electrode. Meanwhile, these methods ignore the importance of spatiotemporal relations in classifying sleep stages. In this work, we propose a combination of a dynamic and static spatiotemporal graph convolutional network (ST-GCN) with inter-temporal attention blocks to overcome two shortcomings. The proposed method consists of a GCN with a CNN that takes into account the intra-frame dependency of each electrode in the brain region to extract spatial and temporal features separately. In addition, the attention block was used to capture the long-range dependencies between the different electrodes in the brain region, which helps the model to classify the dynamics of each sleep stage more accurately. In our experiments, we used the sleep-EDF and the subgroup III of the ISRUC-SLEEP dataset to compare with the most current methods. The results show that our method performs better in accuracy from 4.6% to 5.3%, in Kappa from 0.06 to 0.07, and in macro-F score from 4.9% to 5.7%. The proposed method has the potential to be an effective tool for improving sleep disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助Amadeus采纳,获得10
1秒前
wy完成签到,获得积分10
2秒前
多经历经历完成签到,获得积分10
2秒前
Emma施施完成签到,获得积分10
3秒前
3秒前
优雅惜雪发布了新的文献求助10
4秒前
5秒前
5秒前
Hhhhhhu完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
小伏关注了科研通微信公众号
8秒前
方法完成签到,获得积分10
8秒前
Fan发布了新的文献求助10
10秒前
老实的孤丹完成签到,获得积分10
10秒前
hbjadekylin发布了新的文献求助10
10秒前
今后应助cang采纳,获得10
11秒前
11秒前
12秒前
开心罡完成签到 ,获得积分10
12秒前
小宋应助科研达人采纳,获得10
13秒前
思源应助科研达人采纳,获得30
13秒前
星辰大海应助科研达人采纳,获得10
13秒前
13秒前
14秒前
15秒前
慕青应助杰尼龟采纳,获得10
15秒前
17秒前
思敏发布了新的文献求助30
18秒前
18秒前
ryen发布了新的文献求助10
19秒前
20秒前
dan完成签到 ,获得积分10
20秒前
21秒前
慕青应助友好的冰棍采纳,获得10
21秒前
syvshc应助hahahaha采纳,获得10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320