Deep learning feature extraction for image-based beef carcass yield estimation

自动化 分级(工程) 深度学习 人工智能 瓶颈 计算机科学 工程类 机器学习 运营管理 机械工程 土木工程
作者
Collins Wakholi,Juntae Kim,Shona Nabwire,Kyung Sool Kwon,Changyeun Mo,Suhyun Cho,Byoung-Kwan Cho
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:218: 78-93 被引量:2
标识
DOI:10.1016/j.biosystemseng.2022.04.008
摘要

Recently, there has been increased adoption of automation technologies in production facilities that help to curb mistakes, increase production speed and consistency, and reduce costs. Industrial automation owes its success to the advent of capable computers, smart algorithms, and data availability. In the modern-day slaughterhouse, automation technologies have been employed for operations such as cutting, deboning, grading. As one of the vital operations in the slaughterhouse, carcass grading is usually completed manually by grading staff, which is a bottleneck for production speed and consistency. However, due to the complexity of the problem, most of the technologies available for carcass grading suffer from low performance. This study aims to develop an image-analysis system that uses deep-learning tools for the prediction of key beef yield parameters. The image data collected from the carcass samples were used to develop deep-learning models that extract key features, which were then used to model and predict 23 beef carcass yield parameters using multiple linear regression. The models developed achieved good prediction performance for yield parameters such as lean meat percentage (with R 2 = 0.90, RMSE = 1.98%) and other yield parameters using a few selected features. The results from this study can be used as a foundation for developing an online beef carcass grading system. • Deep learning and image analysis are used to detect and extract useful features from carcass images. • The extracted features are used to effectively estimate 23 key beef carcass yield parameters. • Because of the simplicity of the proposed analysis approach, it can be a useful, cheap, and real time alternative to conventional carcass grading methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助正直的西牛采纳,获得10
1秒前
1秒前
2秒前
2秒前
zsl完成签到,获得积分10
2秒前
hh发布了新的文献求助10
2秒前
啵啵完成签到,获得积分20
2秒前
瘦瘦发布了新的文献求助10
2秒前
2秒前
酷波er应助Carl采纳,获得10
3秒前
付研琪发布了新的文献求助10
3秒前
yang发布了新的文献求助10
4秒前
ML发布了新的文献求助10
4秒前
wxj发布了新的文献求助10
4秒前
echo完成签到 ,获得积分10
5秒前
赛特特特完成签到,获得积分10
6秒前
赵辉发布了新的文献求助10
6秒前
6秒前
下一回发布了新的文献求助10
6秒前
。。。完成签到,获得积分10
7秒前
高贵谷芹发布了新的文献求助10
7秒前
7秒前
fanshiying发布了新的文献求助20
7秒前
桐桐应助lxg采纳,获得10
7秒前
xiaofan发布了新的文献求助10
8秒前
沉默的小兔子完成签到,获得积分10
8秒前
NexusExplorer应助俊逸的翅膀采纳,获得10
9秒前
典雅访旋完成签到,获得积分10
9秒前
科研通AI6应助朴素小鸟胃采纳,获得30
9秒前
9秒前
10秒前
聪明的云完成签到 ,获得积分10
11秒前
烟花应助哦呵呵哈哈啦啦采纳,获得10
11秒前
fufu符发布了新的文献求助10
11秒前
11秒前
鲸落完成签到,获得积分20
11秒前
友好寻真发布了新的文献求助10
12秒前
SJJ应助lyxxll采纳,获得10
12秒前
轻松的语海完成签到,获得积分10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592