数学
嵌入
欧几里得空间
子流形
黎曼流形
平滑的
增广拉格朗日法
歧管(流体力学)
索波列夫空间
应用数学
数学分析
数学优化
计算机科学
工程类
人工智能
统计
机械工程
作者
Kangkang Deng,Ping Zheng
出处
期刊:Ima Journal of Numerical Analysis
日期:2022-05-25
卷期号:43 (3): 1653-1684
被引量:2
标识
DOI:10.1093/imanum/drac018
摘要
Abstract We develop a manifold inexact augmented Lagrangian framework to solve a family of nonsmooth optimization problem on Riemannian submanifold embedding in Euclidean space, whose objective function is the sum of a smooth function (but possibly nonconvex) and a nonsmooth convex function in Euclidean space. By utilizing the Moreau envelope, we get a smoothing Riemannian minimization subproblem at each iteration of the proposed method. Consequentially, each iteration subproblem is solved by a Riemannian Barzilai–Borwein gradient method. Theoretically, the convergence to critical point of the proposed method is established under some mild assumptions. Numerical experiments on compressed modes problems in physic and sparse principal component analysis demonstrate that the proposed method is a competitive method compared with some state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI