Mining typhoon victim information based on multi-source data fusion using social media data in China: a case study of the 2019 Super Typhoon Lekima

微博 社会化媒体 台风 潜在Dirichlet分配 计算机科学 形势意识 欧几里德距离 信息共享 应急管理 数据挖掘 数据科学 主题模型 情报检索 人工智能 地理 万维网 气象学 工程类 政治学 航空航天工程 法学
作者
Kejie Wu,Jidong Wu,Yue Li
出处
期刊:Geomatics, Natural Hazards and Risk [Taylor & Francis]
卷期号:13 (1): 1087-1105 被引量:6
标识
DOI:10.1080/19475705.2022.2064774
摘要

Based on situational awareness and information sharing, social media are regarded as a significant data source for disaster emergency management. Many studies have shown that social media can be used for rapid damage assessments during typhoon disasters, while few studies were able to extract victim information through social media. This study aims to determine whether and how we can mine accurate typhoon victim locations and spatial distributions using microblogs from Sina Weibo, one of the largest social media platforms in China, using a case study of the 2019 Super Typhoon Lekima. We first used the latent Dirichlet allocation (LDA) algorithm to classify disaster-related microblogs and exclude irrelevant information. Then, the SnowNLP library was applied to calculate the sentiment score. The negative sentiment contained victim and injury information but was not specific enough. Finally, Euclidean distance and Euclidean distance considering vulnerability were select to identify victim locations 72 hours after Lekima landed using Ordering Point to Identify the Cluster Structure (OPTICS) algorithm. Compared to the real victim locations, the hit rate of the former was 23.5%, while the latter was 31.8%. These results demonstrate that victim information recognition based on multi-source data fusion from Sina Weibo could be an effective new method for assisting disaster emergency response and rescue during typhoons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
艾科研完成签到,获得积分10
1秒前
2秒前
JamesPei应助脂肪肝采纳,获得10
2秒前
2秒前
2秒前
Orma完成签到,获得积分10
2秒前
apt发布了新的文献求助10
2秒前
2秒前
3秒前
风车完成签到,获得积分10
3秒前
Joker发布了新的文献求助10
4秒前
4秒前
盼盼完成签到,获得积分10
5秒前
酷炫的凡波完成签到,获得积分10
5秒前
嘉芮完成签到,获得积分10
5秒前
ChenXinde完成签到,获得积分10
5秒前
研友_X89o6n完成签到,获得积分10
5秒前
深情安青应助迅速的念芹采纳,获得10
5秒前
6秒前
6秒前
浊轶发布了新的文献求助10
6秒前
不吃鱼的芹菜完成签到,获得积分10
6秒前
6秒前
小小发布了新的文献求助10
6秒前
6秒前
7秒前
wikkk发布了新的文献求助10
7秒前
酷波er应助张朝程采纳,获得10
7秒前
浮游应助成乙采纳,获得10
7秒前
Maestro_S发布了新的文献求助10
8秒前
xiaoxiao完成签到,获得积分10
8秒前
ATOM完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
笑点低可乐完成签到,获得积分10
9秒前
炸虾仁完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077