过电位
塔菲尔方程
析氧
电催化剂
分解水
催化作用
材料科学
化学工程
电化学
氧化物
无机化学
化学
纳米技术
电极
物理化学
冶金
工程类
光催化
生物化学
作者
Lamya Tabassum,Habiba Tasnim,Shubhashish Shubhashish,Inosh Perera,Tejas Bhosale,Meilin Li,Seth March,Mohammad Khairul Islam,Steven L. Suib
标识
DOI:10.1016/j.apmt.2022.101485
摘要
The oxygen evolution reaction (OER) is the key anodic reaction in electrochemical water splitting. OER is a four-electron process with sluggish reaction kinetics. RuO2 and IrO2 are the benchmark catalysts for OER. Thus, finding a low-cost, earth-abundant, and stable electrocatalyst for OER is a big challenge. In this work, we report OER over Se-CuO/CF nanoarrays with an ultralow overpotential of 440 mV (at 50 mA/cm2 current density). Se-CuO/CF nanoarray has a TOF of 0.05 s−1 at 300 mV. The catalyst showed consistent OER performance upto1000 cycles run over a period of 10 h. The OER performance of Se-CuO/CF nanoarrays was compared with RuO2/CF catalyst and the overpotential for RuO2/CF nanoarray was only 10 mV lower than Se-CuO/CF 50 mA/cm2 current density. Se-CuO/CF nanoarray showed 50 mV lower overpotential than the state of the art RuO2/CF catalyst at a current density of 100 mA/cm2. The Tafel slope of Se-CuO/CF is 21 mV/decade lower compared to RuO2/CF suggesting faster reaction kinetics of Se-CuO/CF. The electrochemical surface area and the conductivity were increased upon doping Se into CuO/CF nanoarrays which can be attributed to enhanced OER performance of the Se-CuO/CF nanoarrays.
科研通智能强力驱动
Strongly Powered by AbleSci AI