KNNOR: An oversampling technique for imbalanced datasets

过采样 计算机科学 人工智能 Python(编程语言) 机器学习 噪音(视频) 班级(哲学) 数据挖掘 合成数据 人口 测距 分类器(UML) 模式识别(心理学) 算法 带宽(计算) 图像(数学) 社会学 人口学 操作系统 电信 计算机网络
作者
Ashhadul Islam,Samir Brahim Belhaouari,Atiq Ur Rehman,Halima Bensmail
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:115: 108288-108288 被引量:90
标识
DOI:10.1016/j.asoc.2021.108288
摘要

Predictive performance of Machine Learning (ML) models rely on the quality of data used for training the models. However, if the training data is not balanced among different classes, the performance of ML models deteriorate heavily. Several techniques have been proposed in the literature to add some semblance of balance to the data sets by adding artificial data points. Synthetic Minority Oversampling Technique(SMOTE) and Adaptive Synthetic Sampling(ADASYN) are some of the commonly used techniques to deal with class imbalance. However, these approaches are prone to 'within class imbalance' and 'small disjunct problem'. To overcome these problems, this article proposes an advanced algorithm by studying the compactness and location of the minority class relative to other classes. The proposed technique called K-Nearest Neighbor OveRsampling approach (KNNOR) performs a three step process to identify the critical and safe areas for augmentation and generate synthetic data points of the minority class. The relative density of the entire population is considered while generating artificial points. This enables the proposed KNNOR approach to oversample the minority class more reliably and at the same time stay resilient against noise. The proposed method is compared with the ten top performing contemporary oversamplers by testing the accuracy of classifiers trained on augmented data provided by each oversampler. The experimental results on several common imbalanced datasets show that our method ranks first more consistently than the other state-of-art oversamplers. The proposed method is easy to use and has been made open source as a python library.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyrelias完成签到,获得积分10
刚刚
1秒前
minrui发布了新的文献求助10
1秒前
zj杰发布了新的文献求助10
1秒前
shaco发布了新的文献求助10
2秒前
3秒前
噜啦噜啦嘞完成签到,获得积分10
3秒前
4秒前
董昌铭发布了新的文献求助10
4秒前
禁止吃桃完成签到 ,获得积分10
5秒前
玥来玥好发布了新的文献求助10
6秒前
ming发布了新的文献求助10
9秒前
biozj完成签到 ,获得积分10
13秒前
爆米花完成签到,获得积分10
16秒前
zero_idea发布了新的文献求助10
16秒前
17秒前
科研通AI5应助调皮雨灵采纳,获得10
17秒前
suxin发布了新的文献求助10
17秒前
17秒前
21秒前
21秒前
21秒前
21秒前
五本笔记发布了新的文献求助50
21秒前
Parotodus发布了新的文献求助30
21秒前
21秒前
21秒前
21秒前
21秒前
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
22秒前
美合发布了新的文献求助10
22秒前
zlx发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959