A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach

特征选择 数学优化 整数规划 支持向量机 水准点(测量) 特征(语言学) 计算机科学 线性规划 人工智能 数学 大地测量学 语言学 哲学 地理
作者
In Gyu Lee,Sang Won Yoon,Daehan Won
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:299 (3): 1055-1068 被引量:9
标识
DOI:10.1016/j.ejor.2021.12.030
摘要

Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈傥发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
隐形之玉完成签到,获得积分10
2秒前
小铃铛发布了新的文献求助50
3秒前
菌子锅完成签到,获得积分20
3秒前
3秒前
州州完成签到,获得积分10
3秒前
Boro完成签到,获得积分10
5秒前
5秒前
yydlt完成签到,获得积分10
6秒前
小二郎应助llll采纳,获得10
6秒前
harry应助纸轮采纳,获得10
7秒前
乐乐应助蔚蓝天空采纳,获得10
7秒前
无花果应助可爱的兔兔采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
14秒前
研友_EZ1oWL发布了新的文献求助10
14秒前
15秒前
彭于晏应助hhh采纳,获得30
15秒前
linmo发布了新的文献求助10
15秒前
温婉的从凝完成签到,获得积分20
17秒前
孟梦完成签到 ,获得积分20
17秒前
18秒前
平贝花应助mtfx采纳,获得10
19秒前
pyh发布了新的文献求助10
19秒前
20秒前
yao发布了新的文献求助10
21秒前
火星上的诗兰完成签到,获得积分10
21秒前
21秒前
xiaoxie发布了新的文献求助20
22秒前
24秒前
pyh关闭了pyh文献求助
24秒前
24秒前
慕青应助bzsyr采纳,获得10
24秒前
领导范儿应助wlguo采纳,获得10
24秒前
蝉子发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176