A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach

特征选择 数学优化 整数规划 支持向量机 水准点(测量) 特征(语言学) 计算机科学 线性规划 人工智能 数学 大地测量学 语言学 哲学 地理
作者
In Gyu Lee,Sang Won Yoon,Daehan Won
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:299 (3): 1055-1068 被引量:9
标识
DOI:10.1016/j.ejor.2021.12.030
摘要

Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
che发布了新的文献求助10
刚刚
共享精神应助MeetAgainLZH采纳,获得10
1秒前
1秒前
xing发布了新的文献求助10
1秒前
123完成签到 ,获得积分10
1秒前
2秒前
欧贤书发布了新的文献求助10
2秒前
天天快乐应助Gryphon采纳,获得10
3秒前
粗犷的冷霜完成签到,获得积分10
4秒前
小马发布了新的文献求助10
5秒前
Sunny完成签到,获得积分10
5秒前
小满发布了新的文献求助10
5秒前
6秒前
7秒前
科目三应助董秋白采纳,获得10
7秒前
9秒前
asdfzxcv应助陶醉的梦露采纳,获得10
10秒前
10秒前
olivia发布了新的文献求助10
11秒前
12秒前
桃子发布了新的文献求助10
16秒前
Wudifairy完成签到,获得积分10
16秒前
xbx1991完成签到,获得积分10
17秒前
小满完成签到,获得积分10
18秒前
18秒前
19秒前
eryu25发布了新的文献求助10
20秒前
20秒前
欢喜的小天鹅完成签到 ,获得积分10
20秒前
传奇3应助HOMO采纳,获得10
21秒前
开心小狗完成签到,获得积分10
21秒前
ihuu发布了新的文献求助10
21秒前
guyankuan完成签到,获得积分20
22秒前
CuO发布了新的文献求助10
24秒前
股价发布了新的文献求助10
24秒前
guyankuan发布了新的文献求助10
24秒前
田字格发布了新的文献求助10
25秒前
suer玉完成签到,获得积分10
26秒前
26秒前
xin发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704