A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach

特征选择 数学优化 整数规划 支持向量机 水准点(测量) 特征(语言学) 计算机科学 线性规划 人工智能 数学 大地测量学 语言学 哲学 地理
作者
In Gyu Lee,Sang Won Yoon,Daehan Won
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:299 (3): 1055-1068 被引量:9
标识
DOI:10.1016/j.ejor.2021.12.030
摘要

Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欧贝斯特发布了新的文献求助10
1秒前
烟花应助干净的秋柳采纳,获得30
1秒前
2秒前
打打应助kidneybean采纳,获得10
3秒前
共享精神应助典雅柚子采纳,获得10
3秒前
SciGPT应助高高的冰海采纳,获得10
3秒前
空空关注了科研通微信公众号
4秒前
zeroyee发布了新的文献求助30
4秒前
plu发布了新的文献求助10
5秒前
ddd发布了新的文献求助10
5秒前
xiaoliang完成签到,获得积分10
5秒前
6秒前
ocean完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
从容芮应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
8秒前
1257应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得20
8秒前
Hello应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
风吹完成签到,获得积分10
10秒前
格瑞格完成签到,获得积分10
10秒前
科研通AI2S应助小胖采纳,获得10
11秒前
高高的冰海完成签到,获得积分10
12秒前
大地发布了新的文献求助10
13秒前
风吹发布了新的文献求助10
13秒前
zeroyee完成签到,获得积分10
13秒前
13秒前
辰星发布了新的文献求助10
14秒前
15秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291