Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network

材料科学 复合材料 热导率 陶瓷 纳米花 环氧树脂 界面热阻 热阻 热的 纳米结构 纳米技术 物理 气象学
作者
Li Liu,Daoping Xiang,Liangqing Wu
出处
期刊:Ceramics International [Elsevier BV]
卷期号:48 (8): 10438-10446 被引量:24
标识
DOI:10.1016/j.ceramint.2021.12.252
摘要

Ceramic-polymer composites with good thermal conductivity, low dielectric constant and low dielectric loss have significant applicability in microelectronics and wireless communication systems. However, traditional thermal conductivity ceramic-polymer composites – realized simply through the random dispersion of spherical or near-spherical ceramic powder fillers – cannot have both high thermal conductivity and good electrical insulation, which greatly hinders their practical application. In this study, we first used metallic Al powder corroded by ultrasonic cavitation as the aluminium source, and then prepared spherical aluminium nitride (AlN) powders with many nano petals grown on the surface using the melamine-assisted nitriding method; subsequently, the ice-template method was utilized to construct a three-dimensional (3D) AlN framework with vertical columnar holes, and finally, nanoflower-like AlN-epoxy (EP) composites were prepared by vacuum infiltration. The unique nano petal structures on the surface of AlN powder and the welding between AlN nano-petals during vacuum sintering increased the contact area between nanoflower-like AlN powders and lowered their contact thermal resistance. Moreover, the construction of vertical AlN channels was conducive to the formtion of thermally conductive pathways in AlN-epoxy composites. As a result, we obtained ceramic-polymer composites with improved thermal conductivity, among which the composites with 20 vol% nanoflower-like AlN powder had the highest thermal conductivity – 2.26 W/m·K – compared to a pure matrix, which is equivalent to an enhancement of 830%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石会发发布了新的文献求助10
2秒前
飞快的从丹完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
hahahaha发布了新的文献求助10
9秒前
ak24765发布了新的文献求助10
10秒前
12秒前
的荟完成签到,获得积分10
13秒前
大模型应助无钱采纳,获得10
13秒前
13秒前
14秒前
gky完成签到,获得积分10
14秒前
15秒前
丽娜发布了新的文献求助10
16秒前
16秒前
lyw完成签到 ,获得积分10
17秒前
17秒前
17秒前
思源应助Shi采纳,获得10
17秒前
的荟发布了新的文献求助10
18秒前
Plucky完成签到,获得积分10
18秒前
滚滚完成签到,获得积分10
18秒前
大模型应助淡淡的南风采纳,获得10
19秒前
19秒前
星辰大海应助书晨采纳,获得10
19秒前
Yao发布了新的文献求助30
20秒前
二十七完成签到 ,获得积分10
20秒前
GAOBIN000发布了新的文献求助10
21秒前
腼腆的恶天完成签到,获得积分10
22秒前
科研通AI5应助qq采纳,获得10
22秒前
李爱国应助deway采纳,获得10
22秒前
22秒前
22秒前
holmes发布了新的文献求助10
23秒前
小李发布了新的文献求助10
23秒前
23秒前
有氧呼吸发布了新的文献求助10
24秒前
善莫大焉完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256