Diabetic kidney disease‐predisposing proinflammatory and profibrotic genes identified by weighted gene co‐expression network analysis (WGCNA)

基因 促炎细胞因子 生物 计算生物学 基因表达 候选基因 基因调控网络 下调和上调 转录因子 基因表达谱 生物信息学 遗传学 免疫学 炎症
作者
Jing Chen,Shifu Luo,Xin Yuan,Mi Wang,Haijie Yu,Zheng Zhang,Yong‐Yu Yang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:123 (2): 481-492 被引量:33
标识
DOI:10.1002/jcb.30195
摘要

Abstract Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes. Despite enormous efforts, the underlying underpinnings of DKD remain incompletely appreciated. We sought to perform novel and informative bioinformatic analysis to explore the molecular mechanism of DKD. The gene expression profiles of GSE142025, GSE30528, and GSE30529 datasets were downloaded from the Gene Expression Omnibus database. After the GSE142025 data set was preprocessed, a gene co‐expression network was constructed by weighted gene co‐expression network analysis (WGCNA), and hub genes were selected in the key modules. Meanwhile, differentially expressed genes (DEGs) upregulated commonly were identified between the GSE30528 and GSE30529 datasets. Then, pathway and process enrichment analysis were performed for hub genes and commonly upregulated DEGs. Next, candidate targets were identified by comparing hub genes to commonly upregulated DEGs. Finally, reverse‐transcription quantitative polymerase chain reaction (RT‐qPCR) was carried out to validate the expression of candidate targets, and protein–protein interaction (PPI) network was constructed. A total of 17 modules were clustered by WGCNA, and the most significant turquoise module was selected. Based upon MM > 0.7 and GM > 0.7, 313 hub genes were screened out in turquoise module. Functional analysis of these 313 genes demonstrated their enrichment in pathways involved in leukocyte differentiation, cell morphogenesis, lymphocyte activation, vascular development, collagen synthesis, chemotaxis, and chemokine signaling. A total of 115 commonly upregulated DEGs were identified between the GSE30528 and GSE30529 datasets. Intriguingly, a total of six proinflammatory and profibrotic candidate targets were selected and validated in DKD mice in vivo, including CCR2, MOXD1, COL6A3, COL1A2, PYCARD, and C7. Based on WGCNA and DEG analysis of DKD datasets, six DKD‐predisposing candidate targets were uncovered. The data suggest that inflammation and fibrosis are key mechanisms of DKD, and future studies may determine the causal link between the six proinflammatory and profibrotic genes and DKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Karrisa完成签到,获得积分10
1秒前
我不咋爱看文献完成签到 ,获得积分10
1秒前
bfs完成签到 ,获得积分10
1秒前
ZSH完成签到,获得积分10
2秒前
文艺白晴完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Pierce发布了新的文献求助10
3秒前
不器君发布了新的文献求助10
3秒前
Li发布了新的文献求助10
3秒前
3秒前
图图完成签到,获得积分10
3秒前
yang完成签到,获得积分10
4秒前
5秒前
chen完成签到,获得积分20
5秒前
6秒前
henry完成签到,获得积分10
7秒前
文艺白晴关注了科研通微信公众号
7秒前
lx123发布了新的文献求助10
7秒前
大模型应助阔达宝莹采纳,获得10
8秒前
图图发布了新的文献求助50
8秒前
Splaink发布了新的文献求助10
8秒前
CC发布了新的文献求助10
8秒前
zl12应助xixi采纳,获得10
9秒前
谷云发布了新的文献求助10
10秒前
Dali应助楚子航采纳,获得20
11秒前
老大车完成签到,获得积分10
11秒前
星辰大海应助zhuang采纳,获得30
11秒前
12秒前
帅到被人打完成签到,获得积分10
13秒前
初秋完成签到,获得积分10
13秒前
13秒前
汉堡包应助宋依依采纳,获得10
14秒前
浮游应助Pierce采纳,获得10
15秒前
bbhk完成签到,获得积分10
16秒前
wwqc完成签到,获得积分0
16秒前
Ting发布了新的文献求助20
17秒前
耳火发布了新的文献求助10
17秒前
月月完成签到,获得积分10
17秒前
chen关注了科研通微信公众号
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573