Diabetic kidney disease‐predisposing proinflammatory and profibrotic genes identified by weighted gene co‐expression network analysis (WGCNA)

基因 促炎细胞因子 生物 计算生物学 基因表达 候选基因 基因调控网络 下调和上调 转录因子 基因表达谱 生物信息学 遗传学 免疫学 炎症
作者
Jing Chen,Shifu Luo,Xin Yuan,Mi Wang,Haijie Yu,Zheng Zhang,Yong‐Yu Yang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:123 (2): 481-492 被引量:23
标识
DOI:10.1002/jcb.30195
摘要

Abstract Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes. Despite enormous efforts, the underlying underpinnings of DKD remain incompletely appreciated. We sought to perform novel and informative bioinformatic analysis to explore the molecular mechanism of DKD. The gene expression profiles of GSE142025, GSE30528, and GSE30529 datasets were downloaded from the Gene Expression Omnibus database. After the GSE142025 data set was preprocessed, a gene co‐expression network was constructed by weighted gene co‐expression network analysis (WGCNA), and hub genes were selected in the key modules. Meanwhile, differentially expressed genes (DEGs) upregulated commonly were identified between the GSE30528 and GSE30529 datasets. Then, pathway and process enrichment analysis were performed for hub genes and commonly upregulated DEGs. Next, candidate targets were identified by comparing hub genes to commonly upregulated DEGs. Finally, reverse‐transcription quantitative polymerase chain reaction (RT‐qPCR) was carried out to validate the expression of candidate targets, and protein–protein interaction (PPI) network was constructed. A total of 17 modules were clustered by WGCNA, and the most significant turquoise module was selected. Based upon MM > 0.7 and GM > 0.7, 313 hub genes were screened out in turquoise module. Functional analysis of these 313 genes demonstrated their enrichment in pathways involved in leukocyte differentiation, cell morphogenesis, lymphocyte activation, vascular development, collagen synthesis, chemotaxis, and chemokine signaling. A total of 115 commonly upregulated DEGs were identified between the GSE30528 and GSE30529 datasets. Intriguingly, a total of six proinflammatory and profibrotic candidate targets were selected and validated in DKD mice in vivo, including CCR2, MOXD1, COL6A3, COL1A2, PYCARD, and C7. Based on WGCNA and DEG analysis of DKD datasets, six DKD‐predisposing candidate targets were uncovered. The data suggest that inflammation and fibrosis are key mechanisms of DKD, and future studies may determine the causal link between the six proinflammatory and profibrotic genes and DKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔若完成签到,获得积分10
刚刚
称心的问薇完成签到,获得积分10
1秒前
1秒前
高兴的半凡完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
Answer完成签到,获得积分10
2秒前
诚心凝旋发布了新的文献求助10
2秒前
孟柠柠完成签到,获得积分10
3秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
SYLH应助di采纳,获得10
4秒前
韭菜盒子完成签到,获得积分20
4秒前
4秒前
5秒前
饭小心发布了新的文献求助10
5秒前
tanjianxin完成签到,获得积分10
5秒前
wanci应助帅玉玉采纳,获得10
5秒前
Ellie完成签到 ,获得积分10
5秒前
晴天完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
EOFG0PW发布了新的文献求助10
7秒前
buno应助yug采纳,获得10
7秒前
hgh完成签到,获得积分10
7秒前
001关闭了001文献求助
8秒前
研友_VZG7GZ应助Fareth采纳,获得10
8秒前
9秒前
韭菜盒子发布了新的文献求助10
9秒前
9秒前
大意的安白完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
学术蟑螂完成签到,获得积分10
10秒前
10秒前
10秒前
兴奋冷松完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740