Due to the higher specific capacity and operating voltage platform of the ternary cathode material (LiCoxNiyMn1-x-yO2), it has a specific market application in the electric vehicle (EV) industry. Gel polymer electrolytes (GPEs) have proven to be an effective method of resolving this issue. As a result of its high conductivity and safety performance, pentaerythritol tetraacrylate (PETEA) is a promising gel polymer electrolyte. Butyl methacrylate (BMA) was successfully grafted onto PETEA to decrease its stiffness in this study. Surprisingly, after cycling for 100 cycles at a rate of 2 C, the cycle retention rate of the half-cell of NCM523/GPE/Li reached 63.9%, whereas the utilization of liquid electrolyte ceased to function normally. The successfully prepared PETEA-g-BMA GPE by in-situ thermal polymerization formed a three-dimensional network structure. The PETEA-g-BMA GPE effectively protected the structure of the cathode material during the lithium-ion charging and discharging process, inhibited the occurrence of side reactions, and minimized the risk of thermal runaway. The straightforward preparation process and low cost make industrial applications a possibility in the future.