大分子单体
共单体
共聚物
嬉戏
高分子化学
摩尔质量
聚合
材料科学
降冰片烯
单体
摩尔质量分布
聚合物
复分解
复合材料
作者
Aristotelis Zografos,Nathaniel A. Lynd,Frank S. Bates,Marc A. Hillmyer
出处
期刊:ACS Macro Letters
[American Chemical Society]
日期:2021-12-03
卷期号:10 (12): 1622-1628
被引量:11
标识
DOI:10.1021/acsmacrolett.1c00640
摘要
Graft polymers are useful in a versatile range of material applications. Understanding how changes to the grafted architecture, such as the grafting density (z), the side-chain degree of polymerization (Nsc), and the backbone degree of polymerization (Nbb), affect polymer properties is critical for accurately tuning material performance. For graft-through copolymerizations, changes to Nsc and z are controlled by the macromonomer degree of polymerization (NMM) and the initial fraction of the macromonomer in the feed (fMM0), respectively. We show that changes to these parameters can influence the copolymerization reactivity ratios and, in turn, impact the side-chain distribution along a graft polymer backbone. Poly((±)-lactide) macromonomers with NMM values as low as ca. 1 and as high as 72 were copolymerized with a small-molecule dimethyl ester norbornene comonomer over a range of fMM0 values (0.1 ≤ fMM0 ≤ 0.8) using ring-opening metathesis polymerization (ROMP). Monomer conversion was determined using 1H nuclear magnetic resonance spectroscopy, and the data were fit with terminal and nonterminal copolymerization models. The results from this work provide essential information for manipulating Nsc and z while maintaining synthetic control over the side-chain distribution for graft-through copolymerizations.
科研通智能强力驱动
Strongly Powered by AbleSci AI